Investigation of electrochemical, structural, electronic, thermodynamic, and optical properties of LiTi2O4 cathode material for Li-ion battery: an Ab Initio calculations

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-08-02 DOI:10.1007/s11581-024-05744-6
A. Erraji, R. Masrour, L. Xu
{"title":"Investigation of electrochemical, structural, electronic, thermodynamic, and optical properties of LiTi2O4 cathode material for Li-ion battery: an Ab Initio calculations","authors":"A. Erraji, R. Masrour, L. Xu","doi":"10.1007/s11581-024-05744-6","DOIUrl":null,"url":null,"abstract":"<p>In this research, we have conducted an in-depth investigation into the structural, electronic characteristics, and thermodynamic properties of the LiTi<sub>2</sub>O<sub>4</sub> compound using first-principles calculations grounded in density functional theory with the generalized gradient approximation. Our findings reveal that the LiTi<sub>2</sub>O<sub>4</sub> compound possesses a calculated lattice constant of 8.407 Å. Furthermore, we have derived critical battery-related properties, including an average voltage of 1.53 V versus Li/Li<sup>+</sup> and an energy density of 245 Wh/kg. To deepen our understanding of LiTi<sub>2</sub>O<sub>4</sub>, we have explored its thermodynamic properties employing the quasi-harmonic Debye model. These properties encompass the Debye temperature, volume variation, compressibility modulus, specific capacity, and thermal capacity. Importantly, we have observed that the Debye stiffness of LiTi<sub>2</sub>O<sub>4</sub> increases with rising pressure. Moreover, we have conducted measurements to assess various optical properties of the LiTi<sub>2</sub>O<sub>4</sub> compound. These properties include the absorption coefficient, photoconductivity, and reflectivity.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05744-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we have conducted an in-depth investigation into the structural, electronic characteristics, and thermodynamic properties of the LiTi2O4 compound using first-principles calculations grounded in density functional theory with the generalized gradient approximation. Our findings reveal that the LiTi2O4 compound possesses a calculated lattice constant of 8.407 Å. Furthermore, we have derived critical battery-related properties, including an average voltage of 1.53 V versus Li/Li+ and an energy density of 245 Wh/kg. To deepen our understanding of LiTi2O4, we have explored its thermodynamic properties employing the quasi-harmonic Debye model. These properties encompass the Debye temperature, volume variation, compressibility modulus, specific capacity, and thermal capacity. Importantly, we have observed that the Debye stiffness of LiTi2O4 increases with rising pressure. Moreover, we have conducted measurements to assess various optical properties of the LiTi2O4 compound. These properties include the absorption coefficient, photoconductivity, and reflectivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池正极材料 LiTi2O4 的电化学、结构、电子、热力学和光学特性研究:Ab Initio 计算
在这项研究中,我们采用广义梯度近似的密度泛函理论,对 LiTi2O4 复合物的结构、电子特性和热力学性质进行了深入研究。此外,我们还得出了与电池相关的关键特性,包括对 Li/Li+ 的平均电压为 1.53 V,能量密度为 245 Wh/kg。为了加深对 LiTi2O4 的了解,我们采用准谐波德拜模型探索了它的热力学性质。这些特性包括德拜温度、体积变化、压缩模量、比容和热容。重要的是,我们观察到 LiTi2O4 的 Debye 硬度随压力升高而增加。此外,我们还进行了测量,以评估 LiTi2O4 复合物的各种光学特性。这些特性包括吸收系数、光导率和反射率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
Enhanced stability and electrochemical performance of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material via yttrium doping for advanced sodium-ion batteries Self-templated sacrificial strategy to construct nanorod array-like Co9S8 for high-performance asymmetric supercapacitors Designing NiCoS/CNTs composites for highly efficient bifunctional electrocatalyst in water splitting A simple and rapid batch injection analysis method with amperometric detection for determination of azithromycin in pharmaceutical tablets Synthesis and characterization of (Gd, Nd) co-doped ceramic materials (Gd0.1NdxCe0.9-xO2-δ x = 0.05, 0.10, 0.15) via polyol method using different hydrolysis ratios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1