{"title":"Na2KSb/CsxSb interface engineering for high-efficiency photocathodes","authors":"S.A. Rozhkov, V.V. Bakin, V.S. Rusetsky, D.A. Kustov, V.A. Golyashov, A.Yu. Demin, H.E. Scheibler, V.L. Alperovich, O.E. Tereshchenko","doi":"10.1103/physrevapplied.22.024008","DOIUrl":null,"url":null,"abstract":"Optical and photoemission measurements were performed on alkali antimonide <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes in order to determine their energy-band diagrams, elucidate the photoemission pathways, and explore the options for interface engineering in order to reach high quantum efficiencies of the photocathodes. This study is motivated by the recent discovery of optical orientation in <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> and emission of spin-polarized electrons from <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes [V.S. Rusetsky <i>et al.</i>, Phys. Rev. Lett. <b>129</b>, 166802 (2022)]. We have shown that the band gap <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>g</mi></msub></math> of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mn>295</mn></math> K lies within the range of 1.40–1.44 eV. The <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by the deposition of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Sb</mi></math> results in effective electron affinity decrease by approximately 0.37 eV, and in an increase of the quantum efficiency up to 0.2 electrons per incident photon. The analysis of longitudinal energy distribution curves (EDCs) proves that the surface of activated <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathodes have negative effective electron affinity of approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>0.1</mn></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>0.25</mn></math> eV at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>T</mi><mo>=</mo><mn>295</mn></math> and 80 K, respectively. EDC measurements under increasing photon energy <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi></math> demonstrate the transition of photoemission pathway from the surface states’ photoionization at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi><mo><</mo><msub><mi>E</mi><mi>g</mi></msub></math> to the emission from the conduction-band bottom at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi><mo>≈</mo><msub><mi>E</mi><mi>g</mi></msub></math> and from the states with high kinetic energy in the conduction band at <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi><mi>ω</mi><mo>></mo><msub><mi>E</mi><mi>g</mi></msub></math>. EDCs measured at 80 K reveal a highly directional photoelectron emission from the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, as compared to the <i>p</i>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math>,<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>) photocathode. This fact, along with the observed significant, by an order of magnitude, increase in the photoluminescence intensity under the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi></math> surface activation by <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Sb</mi></math>, indicates relatively weak diffuse scattering in the “quasiepitaxial” <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> activation layer of a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Na</mi><mn>2</mn></msub><mi>KSb</mi><mo>/</mo><msub><mi>Cs</mi><mi>x</mi></msub><mi>Sb</mi></math> photocathode, compared to strong scattering in the amorphous (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math>,<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>) activation layer of a <i>p</i>-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Ga</mi><mi>As</mi></mrow></math>(<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Cs</mi></math>,<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>) photocathode.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"190 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024008","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Optical and photoemission measurements were performed on alkali antimonide and photocathodes in order to determine their energy-band diagrams, elucidate the photoemission pathways, and explore the options for interface engineering in order to reach high quantum efficiencies of the photocathodes. This study is motivated by the recent discovery of optical orientation in and emission of spin-polarized electrons from photocathodes [V.S. Rusetsky et al., Phys. Rev. Lett. 129, 166802 (2022)]. We have shown that the band gap of at K lies within the range of 1.40–1.44 eV. The surface activation by the deposition of and results in effective electron affinity decrease by approximately 0.37 eV, and in an increase of the quantum efficiency up to 0.2 electrons per incident photon. The analysis of longitudinal energy distribution curves (EDCs) proves that the surface of activated photocathodes have negative effective electron affinity of approximately and eV at and 80 K, respectively. EDC measurements under increasing photon energy demonstrate the transition of photoemission pathway from the surface states’ photoionization at to the emission from the conduction-band bottom at and from the states with high kinetic energy in the conduction band at . EDCs measured at 80 K reveal a highly directional photoelectron emission from the photocathode, as compared to the p-(,) photocathode. This fact, along with the observed significant, by an order of magnitude, increase in the photoluminescence intensity under the surface activation by and , indicates relatively weak diffuse scattering in the “quasiepitaxial” activation layer of a photocathode, compared to strong scattering in the amorphous (,) activation layer of a p-(,) photocathode.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.