Moein Malekakhlagh, Timothy Phung, Daniel Puzzuoli, Kentaro Heya, Neereja Sundaresan, Jason Orcutt
{"title":"Enhanced quantum state transfer and Bell-state generation over long-range multimode interconnects via superadiabatic transitionless driving","authors":"Moein Malekakhlagh, Timothy Phung, Daniel Puzzuoli, Kentaro Heya, Neereja Sundaresan, Jason Orcutt","doi":"10.1103/physrevapplied.22.024006","DOIUrl":null,"url":null,"abstract":"Achieving high-fidelity direct two-qubit gates over meter-scale quantum interconnects is challenging, in part due to the multimode nature of such systems. One alternative scheme is to combine local operations with remote quantum state transfer or remote entanglement. Here, we theoretically study quantum state transfer and entanglement generation for two distant qubits, equipped with tunable interactions, over a common multimode interconnect. We model the performance of the superadiabatic transitionless driving (SATD) protocol for adiabatic passage and demonstrate various favorable improvements over the standard method. In particular, by suppressing leakage to a select (resonant) interconnect mode, SATD breaks the speed-limit relation imposed by the qubit-interconnect interaction <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math>, where instead the operation time is limited by leakage to the adjacent modes, i.e., the free spectral range <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Δ</mi><mi>c</mi></msub></math> of the interconnect, allowing for fast operations even with weak <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math>. Furthermore, we identify a multimode error mechanism for Bell-state generation using such adiabatic protocols, in which the even/odd modal dependence of qubit-interconnect interaction breaks down the dark-state symmetry, leading to detrimental adiabatic overlap with the odd modes growing as <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>g</mi><mo>/</mo><msub><mi mathvariant=\"normal\">Δ</mi><mi>c</mi></msub><msup><mo stretchy=\"false\">)</mo><mn>2</mn></msup></math>. Therefore, adopting a weak coupling, imposed by a multimode interconnect, SATD provides a significant improvement in terms of operation speed and consequently sensitivity to incoherent error.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"46 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024006","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving high-fidelity direct two-qubit gates over meter-scale quantum interconnects is challenging, in part due to the multimode nature of such systems. One alternative scheme is to combine local operations with remote quantum state transfer or remote entanglement. Here, we theoretically study quantum state transfer and entanglement generation for two distant qubits, equipped with tunable interactions, over a common multimode interconnect. We model the performance of the superadiabatic transitionless driving (SATD) protocol for adiabatic passage and demonstrate various favorable improvements over the standard method. In particular, by suppressing leakage to a select (resonant) interconnect mode, SATD breaks the speed-limit relation imposed by the qubit-interconnect interaction , where instead the operation time is limited by leakage to the adjacent modes, i.e., the free spectral range of the interconnect, allowing for fast operations even with weak . Furthermore, we identify a multimode error mechanism for Bell-state generation using such adiabatic protocols, in which the even/odd modal dependence of qubit-interconnect interaction breaks down the dark-state symmetry, leading to detrimental adiabatic overlap with the odd modes growing as . Therefore, adopting a weak coupling, imposed by a multimode interconnect, SATD provides a significant improvement in terms of operation speed and consequently sensitivity to incoherent error.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.