Force and kinetics of fast and slow muscle myosin determined with a synthetic sarcomere-like nanomachine

Valentina Buonfiglio, Irene Pertici, Matteo Marcello, Ilaria Morotti, Marco Caremani, Massimo Reconditi, Marco Linari, Duccio Fanelli, Vincenzo Lombardi, Pasquale Bianco
{"title":"Force and kinetics of fast and slow muscle myosin determined with a synthetic sarcomere-like nanomachine","authors":"Valentina Buonfiglio, Irene Pertici, Matteo Marcello, Ilaria Morotti, Marco Caremani, Massimo Reconditi, Marco Linari, Duccio Fanelli, Vincenzo Lombardi, Pasquale Bianco","doi":"arxiv-2408.00373","DOIUrl":null,"url":null,"abstract":"Myosin II is the muscle molecular motor that works in two bipolar arrays in\neach thick filament of the striated (skeletal and cardiac) muscle, converting\nthe chemical energy into steady force and shortening by cyclic ATP--driven\ninteractions with the nearby actin filaments. Different isoforms of the myosin\nmotor in the skeletal muscles account for the different functional requirements\nof the slow muscles (primarily responsible for the posture) and fast muscles\n(responsible for voluntary movements). To clarify the molecular basis of the\ndifferences, here the isoform--dependent mechanokinetic parameters underpinning\nthe force of slow and fast muscles are defined with a unidimensional synthetic\nnanomachine powered by pure myosin isoforms from either slow or fast rabbit\nskeletal muscle. Data fitting with a stochastic model provides a\nself--consistent estimate of all the mechanokinetic properties of the motor\nensemble including the motor force, the fraction of actin--attached motors and\nthe rate of transition through the attachment--detachment cycle. The\nachievements in this paper set the stage for any future study on the emergent\nmechanokinetic properties of an ensemble of myosin molecules either engineered\nor purified from mutant animal models or human biopsies.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Myosin II is the muscle molecular motor that works in two bipolar arrays in each thick filament of the striated (skeletal and cardiac) muscle, converting the chemical energy into steady force and shortening by cyclic ATP--driven interactions with the nearby actin filaments. Different isoforms of the myosin motor in the skeletal muscles account for the different functional requirements of the slow muscles (primarily responsible for the posture) and fast muscles (responsible for voluntary movements). To clarify the molecular basis of the differences, here the isoform--dependent mechanokinetic parameters underpinning the force of slow and fast muscles are defined with a unidimensional synthetic nanomachine powered by pure myosin isoforms from either slow or fast rabbit skeletal muscle. Data fitting with a stochastic model provides a self--consistent estimate of all the mechanokinetic properties of the motor ensemble including the motor force, the fraction of actin--attached motors and the rate of transition through the attachment--detachment cycle. The achievements in this paper set the stage for any future study on the emergent mechanokinetic properties of an ensemble of myosin molecules either engineered or purified from mutant animal models or human biopsies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用合成的类肉瘤纳米机械测定快慢肌肌球蛋白的力量和动力学特性
肌球蛋白Ⅱ是肌肉分子马达,它在横纹肌(骨骼肌和心肌)每条粗丝的两个双极阵列中工作,通过与附近肌动蛋白丝的循环 ATP 驱动相互作用,将化学能转化为稳定的力量和缩短。由于骨骼肌中肌球蛋白运动的同工形式不同,慢肌(主要负责姿势)和快肌(负责自主运动)的功能要求也不同。为了阐明这种差异的分子基础,本文通过一个由纯兔慢肌或快肌肌球蛋白同工酶驱动的单维合成纳米机器,定义了支撑慢肌和快肌力量的同工酶依赖性机械动力学参数。随机模型的数据拟合为运动组合的所有机械动力学特性提供了自我一致的估计,包括运动力、肌动蛋白附着运动的比例以及附着-分离循环的转换率。本文的研究成果为今后研究从突变动物模型或人体活组织中设计或纯化的肌球蛋白分子集合的新机械动力学特性奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1