Interrupted Time Series Design and Analyses in Health Policy Assessment

Huan Jiang, Jurgen Rehm, Alexander Tran, Shannon Lange
{"title":"Interrupted Time Series Design and Analyses in Health Policy Assessment","authors":"Huan Jiang, Jurgen Rehm, Alexander Tran, Shannon Lange","doi":"10.1101/2024.08.01.24311280","DOIUrl":null,"url":null,"abstract":"Interrupted time series design is a quasi-experimental study design commonly used to evaluate the impact of a particular intervention (e.g., a health policy implementation) on a specific outcome. Two of the most often recommended analytical approaches to interrupted time series analysis are autoregressive integrated moving average (ARIMA) and Generalized Additive Models (GAM). We conducted simulation tests to determine the performance differences between ARIMA and GAM methodology across different policy effect sizes, with or without seasonality, and with or without misspecification of policy variables. We found that ARIMA exhibited more consistent results under certain conditions, such as with different policy effect sizes, with or without seasonality, while GAM were more robust when the model was misspecified. Given these findings, the variation between the models underscores the need for careful model selection and validation in health policy studies.","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.01.24311280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interrupted time series design is a quasi-experimental study design commonly used to evaluate the impact of a particular intervention (e.g., a health policy implementation) on a specific outcome. Two of the most often recommended analytical approaches to interrupted time series analysis are autoregressive integrated moving average (ARIMA) and Generalized Additive Models (GAM). We conducted simulation tests to determine the performance differences between ARIMA and GAM methodology across different policy effect sizes, with or without seasonality, and with or without misspecification of policy variables. We found that ARIMA exhibited more consistent results under certain conditions, such as with different policy effect sizes, with or without seasonality, while GAM were more robust when the model was misspecified. Given these findings, the variation between the models underscores the need for careful model selection and validation in health policy studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卫生政策评估中的间断时间序列设计与分析
间断时间序列设计是一种准实验研究设计,通常用于评估特定干预措施(如卫生政策的实施)对特定结果的影响。中断时间序列分析最常推荐的两种分析方法是自回归综合移动平均法(ARIMA)和广义加法模型(GAM)。我们进行了模拟测试,以确定 ARIMA 和 GAM 方法在不同的政策效应大小、有无季节性以及有无政策变量的误设情况下的性能差异。我们发现,在某些条件下,如不同的政策效应大小、有无季节性,ARIMA 的结果更为一致,而 GAM 在模型被误设时更为稳健。鉴于这些发现,模型之间的差异凸显了在卫生政策研究中谨慎选择和验证模型的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Climate Change and Malaria: A Call for Robust Analytics Female Infertility and Neurodevelopmental Disorders in Children: associations and evidence for familial confounding in Denmark Surveillance and control of neglected zoonotic diseases: methodological approaches to studying Rift Valley Fever, Crimean-Congo Haemorrhagic Fever and Brucellosis at the human-livestock-wildlife interface across diverse agricultural systems in Uganda Climate variation and serotype competition drive dengue outbreak dynamics in Singapore Leveraging an Online Dashboard to Inform on Infectious Disease Surveillance: A case Study of COVID-19 in Kenya.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1