Chenxing Xia, Huizhen Cao, Xiuju Gao, Bin Ge, Kuan-Ching Li, Xianjin Fang, Yan Zhang, Xingzhu Liang
{"title":"Boundary enhancement and refinement network for camouflaged object detection","authors":"Chenxing Xia, Huizhen Cao, Xiuju Gao, Bin Ge, Kuan-Ching Li, Xianjin Fang, Yan Zhang, Xingzhu Liang","doi":"10.1007/s00138-024-01588-2","DOIUrl":null,"url":null,"abstract":"<p>Camouflaged object detection aims to locate and segment objects accurately that conceal themselves well in the environment. Despite the advancements in deep learning methods, prevalent issues persist, including coarse boundary identification in complex scenes and the ineffective integration of multi-source features. To this end, we propose a novel boundary enhancement and refinement network named BERNet, which mainly consists of three modules for enhancing and refining boundary information: an asymmetric edge module (AEM) with multi-groups dilated convolution block (GDCB), a residual mixed pooling enhanced module (RPEM), and a multivariate information interaction refiner module (M2IRM). AEM with GDCB is designed to obtain rich boundary clues, where different dilation rates are used to expand the receptive field. RPEM is capable of enhancing boundary features under the guidance of boundary cues to improve the detection accuracy of small and multiple camouflaged objects. M2IRM is introduced to refine the side-out prediction maps progressively under the supervision of the ground truth by the fusion of multi-source information. Comprehensive experiments on three benchmark datasets demonstrate the effectiveness of our BERNet with competitive state-of-the-art methods under the most evaluation metrics.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"33 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01588-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Camouflaged object detection aims to locate and segment objects accurately that conceal themselves well in the environment. Despite the advancements in deep learning methods, prevalent issues persist, including coarse boundary identification in complex scenes and the ineffective integration of multi-source features. To this end, we propose a novel boundary enhancement and refinement network named BERNet, which mainly consists of three modules for enhancing and refining boundary information: an asymmetric edge module (AEM) with multi-groups dilated convolution block (GDCB), a residual mixed pooling enhanced module (RPEM), and a multivariate information interaction refiner module (M2IRM). AEM with GDCB is designed to obtain rich boundary clues, where different dilation rates are used to expand the receptive field. RPEM is capable of enhancing boundary features under the guidance of boundary cues to improve the detection accuracy of small and multiple camouflaged objects. M2IRM is introduced to refine the side-out prediction maps progressively under the supervision of the ground truth by the fusion of multi-source information. Comprehensive experiments on three benchmark datasets demonstrate the effectiveness of our BERNet with competitive state-of-the-art methods under the most evaluation metrics.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.