{"title":"Development of advanced power reactor nuclear power plants containment pressure and temperature analysis methodology using CAP computer code","authors":"Yong-Ju Cho, Sun-Chang Moon, Dae-Hyung Lee, Sun-Hong Yoon","doi":"10.1007/s12206-024-2109-2","DOIUrl":null,"url":null,"abstract":"<p>The paper provides a detailed overview of the development of a containment pressure and temperature (P/T) analysis methodology for advanced power reactor 1400 (APR1400) nuclear power plants (NPPs). The study addresses the restrictions on exporting independent nuclear power plants by utilizing the containment analysis package (CAP) computer code developed in Korea. One of the key aspects highlighted in the paper is the comparison of results obtained from the CAP code with those from the CONTEMPT-LT/028 code which is used P/T analysis. The analysis focuses on two types of accidents: loss of coolant accidents (LOCA) and main steam line break (MSLB) accidents, which are considered as design basis accidents. By comparing the outcomes of both codes, the paper evaluates the performance and effectiveness of the CAP code in predicting the P/T behavior within the containment during these accidents. The paper also discusses the criteria and technical standards for the containment P/T analysis. It emphasizes the importance of ensuring that the peak P/T remain within the safety related systems, equipment, and structures of NPP. The design pressure is identified as a critical factor in achieving these objectives. In conclusion, the study presents the successful development of a containment P/T analysis methodology using the CAP computer code for APR1400. The methodology considers the specific characteristics of Korean NPPs and new code, CAP. The paper emphasizes the applicability and effectiveness of the CAP code in this context. However, further research and validation efforts are recommended to enhance the accuracy and reliability of the methodology for various design basis accidents. The developed methodology is expected to contribute to the safe and efficient operation of APR1400 NPPs and support Korea’s ambitions in exporting NPPs’ technology to other countries.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-2109-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The paper provides a detailed overview of the development of a containment pressure and temperature (P/T) analysis methodology for advanced power reactor 1400 (APR1400) nuclear power plants (NPPs). The study addresses the restrictions on exporting independent nuclear power plants by utilizing the containment analysis package (CAP) computer code developed in Korea. One of the key aspects highlighted in the paper is the comparison of results obtained from the CAP code with those from the CONTEMPT-LT/028 code which is used P/T analysis. The analysis focuses on two types of accidents: loss of coolant accidents (LOCA) and main steam line break (MSLB) accidents, which are considered as design basis accidents. By comparing the outcomes of both codes, the paper evaluates the performance and effectiveness of the CAP code in predicting the P/T behavior within the containment during these accidents. The paper also discusses the criteria and technical standards for the containment P/T analysis. It emphasizes the importance of ensuring that the peak P/T remain within the safety related systems, equipment, and structures of NPP. The design pressure is identified as a critical factor in achieving these objectives. In conclusion, the study presents the successful development of a containment P/T analysis methodology using the CAP computer code for APR1400. The methodology considers the specific characteristics of Korean NPPs and new code, CAP. The paper emphasizes the applicability and effectiveness of the CAP code in this context. However, further research and validation efforts are recommended to enhance the accuracy and reliability of the methodology for various design basis accidents. The developed methodology is expected to contribute to the safe and efficient operation of APR1400 NPPs and support Korea’s ambitions in exporting NPPs’ technology to other countries.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.