Design and performance evaluation of a novel slightly acidic electrolysed water spraying air purifier for airborne bacteria and endotoxin in indoor air
{"title":"Design and performance evaluation of a novel slightly acidic electrolysed water spraying air purifier for airborne bacteria and endotoxin in indoor air","authors":"Chang Liu, Zonggang Li, Senzhong Deng, Weichao Zheng","doi":"10.1177/1420326x241268320","DOIUrl":null,"url":null,"abstract":"Conventional air purifiers are low effective in inactivating airborne bacteria and may cause secondary contamination by releasing endotoxins. In this study, a novel air purifier was developed and used in a static chamber, which used slightly acidic electrolysed water (SAEW) solutions as the circulating disinfectant spray medium that automatically renewed every 30 min. During the 30-minute operation, the air and solution samples were collected to measure the bacteria and endotoxin concentration by using a culturable-based method and a limulus amoebocyte lysate assay kit, respectively. The pH and endotoxin of the circulating solution were gradually increased, and the available chlorine concentration (ACC, from 87 to 50 mg/L) was decreased. Although airborne bacteria were reduced significantly, the levels of airborne endotoxins at the inlet and outlet of the purifier remained constant. Moreover, a validation experiment revealed that SAEW, with ACC of 20, 60 and 100 mg/L, cannot inactivate standard endotoxin solutions. In the experimental chamber, the airborne bacteria level (1142 CFU/m<jats:sup>3</jats:sup>) was significantly lower compared to the control chamber (3325 CFU/m<jats:sup>3</jats:sup>), with no significant difference in airborne endotoxin levels between the chambers. Our results showed that the SAEW spray air purifier could effectively remove airborne bacteria without increasing airborne endotoxin levels within a 30-minute operational period.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":"21 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x241268320","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional air purifiers are low effective in inactivating airborne bacteria and may cause secondary contamination by releasing endotoxins. In this study, a novel air purifier was developed and used in a static chamber, which used slightly acidic electrolysed water (SAEW) solutions as the circulating disinfectant spray medium that automatically renewed every 30 min. During the 30-minute operation, the air and solution samples were collected to measure the bacteria and endotoxin concentration by using a culturable-based method and a limulus amoebocyte lysate assay kit, respectively. The pH and endotoxin of the circulating solution were gradually increased, and the available chlorine concentration (ACC, from 87 to 50 mg/L) was decreased. Although airborne bacteria were reduced significantly, the levels of airborne endotoxins at the inlet and outlet of the purifier remained constant. Moreover, a validation experiment revealed that SAEW, with ACC of 20, 60 and 100 mg/L, cannot inactivate standard endotoxin solutions. In the experimental chamber, the airborne bacteria level (1142 CFU/m3) was significantly lower compared to the control chamber (3325 CFU/m3), with no significant difference in airborne endotoxin levels between the chambers. Our results showed that the SAEW spray air purifier could effectively remove airborne bacteria without increasing airborne endotoxin levels within a 30-minute operational period.
期刊介绍:
Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).