Molecular sandwich-based DNAzyme catalytic reaction towards transducing efficient nanopore electrical detection for antigen proteins

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-02 DOI:10.1039/d4fd00146j
Lebing Wang, Shou Zhou, Yunjiao Wang, Yan Wang, Jing Li, Xiaohan Chen, Daming Zhou, Liyuan Liang, Bohua Yin, Youwen Zhang, Liang Wang
{"title":"Molecular sandwich-based DNAzyme catalytic reaction towards transducing efficient nanopore electrical detection for antigen proteins","authors":"Lebing Wang, Shou Zhou, Yunjiao Wang, Yan Wang, Jing Li, Xiaohan Chen, Daming Zhou, Liyuan Liang, Bohua Yin, Youwen Zhang, Liang Wang","doi":"10.1039/d4fd00146j","DOIUrl":null,"url":null,"abstract":"Despite significant advances in nanopore nucleic acids sequencing and sensing, proteins detection remains challenging due to the complexity of inherent protein molecular properties (i.e., net charges, polarity, molecular conformation & dimension) and sophisticated environmental parameters (i.e., biofluids), resulting in unsatisfied electrical signal resolution for proteins detection such as poor accessibility, selectivity and sensitivity. The selection of an appropriate electroanalytical approach is strongly desired which should be capable of offering easily detectable and readable signals regarding proteins particularly depending on the practical application. Herein, a molecular sandwich-based DNAzyme catalytic reaction cooperated nanopore detecting approach was designed. Especially, this approach is given the easy use of Mg2+ catalyzed DNAzyme (10-23) toward nucleic acids digestion for efficient antigen protein examination. Its applicability within the proposed strategy operates by initial formation of a molecular sandwich containing capture antibody-antigen-detection antibody for efficiently entrapment of target proteins (herein taking HIV p24 antigen for example) and immobilized on magnetic beads surface. After that, the DNAzyme was linked to the detection antibody via biotin−streptavidin interaction. In the presence of Mg2+, DNAzyme catalytic reaction was triggered to digest nucleic acids substrates and release unique cleavage fragments as reporters capable of transducing easier detectable nucleic acids as substitute of complicated and difficulty-yielded protein signals, in a nanopore. Notably, experimental validation confirms the detecting stability and sensitivity for target antigen referenced with other antigen proteins, meanwhile demonstrates the detection efficacy in human serum environment at very low concentration (LoD ~1.24 pM). This DNAzyme cooperated nanopore electroanalytical approach denotes an advancement in protein examination, may benefit in vitro test of proteinic biomarkers for disease diagnosis and prognosis assessment.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00146j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant advances in nanopore nucleic acids sequencing and sensing, proteins detection remains challenging due to the complexity of inherent protein molecular properties (i.e., net charges, polarity, molecular conformation & dimension) and sophisticated environmental parameters (i.e., biofluids), resulting in unsatisfied electrical signal resolution for proteins detection such as poor accessibility, selectivity and sensitivity. The selection of an appropriate electroanalytical approach is strongly desired which should be capable of offering easily detectable and readable signals regarding proteins particularly depending on the practical application. Herein, a molecular sandwich-based DNAzyme catalytic reaction cooperated nanopore detecting approach was designed. Especially, this approach is given the easy use of Mg2+ catalyzed DNAzyme (10-23) toward nucleic acids digestion for efficient antigen protein examination. Its applicability within the proposed strategy operates by initial formation of a molecular sandwich containing capture antibody-antigen-detection antibody for efficiently entrapment of target proteins (herein taking HIV p24 antigen for example) and immobilized on magnetic beads surface. After that, the DNAzyme was linked to the detection antibody via biotin−streptavidin interaction. In the presence of Mg2+, DNAzyme catalytic reaction was triggered to digest nucleic acids substrates and release unique cleavage fragments as reporters capable of transducing easier detectable nucleic acids as substitute of complicated and difficulty-yielded protein signals, in a nanopore. Notably, experimental validation confirms the detecting stability and sensitivity for target antigen referenced with other antigen proteins, meanwhile demonstrates the detection efficacy in human serum environment at very low concentration (LoD ~1.24 pM). This DNAzyme cooperated nanopore electroanalytical approach denotes an advancement in protein examination, may benefit in vitro test of proteinic biomarkers for disease diagnosis and prognosis assessment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分子夹心 DNA 酶催化反应的抗原蛋白高效纳米孔电检测技术
尽管在纳米孔核酸测序和传感方面取得了重大进展,但由于蛋白质固有的分子特性(如净电荷、极性、分子构象和ampamp;尺寸)和复杂的环境参数(如生物流体)的复杂性,蛋白质检测仍面临挑战,导致蛋白质检测的电信号分辨率不理想,如可及性、选择性和灵敏度差。因此,选择一种适当的电分析方法是非常必要的,这种方法应能提供易于检测和读取的蛋白质信号,特别是在实际应用中。在此,我们设计了一种基于 DNA 酶催化反应的分子三明治式纳米孔检测方法。特别是,这种方法易于使用 Mg2+ 催化的 DNA 酶(10-23)对核酸进行消化,从而实现高效的抗原蛋白检测。它在拟议策略中的适用性是,首先形成一个分子夹心层,其中包含捕获抗体-抗原-检测抗体,以有效捕获目标蛋白(此处以 HIV p24 抗原为例),并固定在磁珠表面。然后,DNA 酶通过生物素-链霉亲和素相互作用与检测抗体相连。在 Mg2+ 的存在下,DNA 酶的催化反应被触发,消化核酸底物,释放出独特的裂解片段作为报告物,能够在纳米孔中转导更容易检测的核酸,以替代复杂和难以产生的蛋白质信号。值得注意的是,实验验证证实了目标抗原与其他抗原蛋白的检测稳定性和灵敏度,同时证明了在人体血清环境中极低浓度(LoD ~1.24 pM)的检测功效。这种 DNA 酶协同纳米孔电分析方法标志着蛋白质检测技术的进步,可能有利于体外检测蛋白质生物标志物,以进行疾病诊断和预后评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1