{"title":"Opposite regulation by L-DOPA receptor GPR143 of the long and short forms of the dopamine D2 receptors","authors":"Rei Tajika , Daiki Masukawa , Masami Arai , Hiroyuki Nawa , Yoshio Goshima","doi":"10.1016/j.jphs.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><p>Dopamine (DA) D2 receptors (D2Rs) have 2 isoforms, a long form (D2L) and a short form (D2S). D2L is predominantly postsynaptic in the striatal medium spiny neurons and cholinergic interneurons. D2S is principally presynaptic autoreceptors in the nigrostriatal DA neurons. Recently, we demonstrated that L-3,4-dihydroxyphenylalanine (L-DOPA) augments D2L function through the coupling between D2L and GPR143, a receptor of L-DOPA that was originally identified as the gene product of ocular albinism 1. Here we show that GPR143 modifies the functions of D2L and D2S in an opposite manner. Haloperidol-induced catalepsy was attenuated in DA neuron-specific <em>Gpr143 gene</em>-deficient (<em>Dat-cre;Gpr143</em><sup><em>flox/y</em></sup>) mice, compared with wild-type (<em>Wt</em>) mice. Haloperidol increased in vivo DA release from the dorsolateral striatum, and this increase was augmented in <em>Gpr143</em><sup><em>-/y</em></sup> mice compared with <em>Wt</em> mice. A D2R agonist quinpirole-induced increase in the phosphorylation of GSK3β(pGSK3β(S9)) was enhanced in Chinese hamster ovary (CHO) cells coexpressing D2L and GPR143 compared with cells expressing D2L alone, while it was suppressed in cells coexpressing D2S and GPR143 compared with D2S alone, suggesting that GPR143 differentially modifies D2R functions depending on its isoforms of D2L and D2S.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 2","pages":"Pages 77-81"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000549/pdfft?md5=0fada20c7d5bb425a552b2ffd56ab094&pid=1-s2.0-S1347861324000549-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861324000549","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Dopamine (DA) D2 receptors (D2Rs) have 2 isoforms, a long form (D2L) and a short form (D2S). D2L is predominantly postsynaptic in the striatal medium spiny neurons and cholinergic interneurons. D2S is principally presynaptic autoreceptors in the nigrostriatal DA neurons. Recently, we demonstrated that L-3,4-dihydroxyphenylalanine (L-DOPA) augments D2L function through the coupling between D2L and GPR143, a receptor of L-DOPA that was originally identified as the gene product of ocular albinism 1. Here we show that GPR143 modifies the functions of D2L and D2S in an opposite manner. Haloperidol-induced catalepsy was attenuated in DA neuron-specific Gpr143 gene-deficient (Dat-cre;Gpr143flox/y) mice, compared with wild-type (Wt) mice. Haloperidol increased in vivo DA release from the dorsolateral striatum, and this increase was augmented in Gpr143-/y mice compared with Wt mice. A D2R agonist quinpirole-induced increase in the phosphorylation of GSK3β(pGSK3β(S9)) was enhanced in Chinese hamster ovary (CHO) cells coexpressing D2L and GPR143 compared with cells expressing D2L alone, while it was suppressed in cells coexpressing D2S and GPR143 compared with D2S alone, suggesting that GPR143 differentially modifies D2R functions depending on its isoforms of D2L and D2S.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.