Deep inner-knuckle-print recognition using lightweight Siamese network

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Imaging Pub Date : 2024-08-01 DOI:10.1117/1.jei.33.4.043034
Hongxia Wang, Hongwu Yuan
{"title":"Deep inner-knuckle-print recognition using lightweight Siamese network","authors":"Hongxia Wang, Hongwu Yuan","doi":"10.1117/1.jei.33.4.043034","DOIUrl":null,"url":null,"abstract":"Texture features and stability have attracted much attention in the field of biometric recognition. The inner-knuckle print is unique and not easy to forge, so it is widely used in personal identity authentication, criminal detection, and other fields. In recent years, the rapid development of deep learning technology has brought new opportunities for internal-knuckle recognition. We propose a deep inner-knuckle print recognition method named LSKNet network. By establishing a lightweight Siamese network model and combining it with a robust cost function, we can realize efficient and accurate recognition of the inner-knuckle print. Compared to traditional methods and other deep learning methods, the network has lower model complexity and computational resource requirements, which enables it to run under lower hardware configurations. In addition, this paper also uses all the knuckle prints of four fingers for concatenated fusion recognition. Experimental results demonstrate that this method has achieved satisfactory results in the task of internal-knuckle print recognition.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"15 12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043034","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Texture features and stability have attracted much attention in the field of biometric recognition. The inner-knuckle print is unique and not easy to forge, so it is widely used in personal identity authentication, criminal detection, and other fields. In recent years, the rapid development of deep learning technology has brought new opportunities for internal-knuckle recognition. We propose a deep inner-knuckle print recognition method named LSKNet network. By establishing a lightweight Siamese network model and combining it with a robust cost function, we can realize efficient and accurate recognition of the inner-knuckle print. Compared to traditional methods and other deep learning methods, the network has lower model complexity and computational resource requirements, which enables it to run under lower hardware configurations. In addition, this paper also uses all the knuckle prints of four fingers for concatenated fusion recognition. Experimental results demonstrate that this method has achieved satisfactory results in the task of internal-knuckle print recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用轻量级连体网络深度识别关节内侧指纹
纹理特征和稳定性在生物识别领域备受关注。指关节内侧指纹具有唯一性、不易伪造等特点,因此被广泛应用于个人身份认证、犯罪侦查等领域。近年来,深度学习技术的快速发展为指关节内侧识别带来了新的机遇。我们提出了一种名为 LSKNet 网络的深度指关节内侧指纹识别方法。通过建立轻量级连体网络模型,并将其与鲁棒成本函数相结合,我们可以实现高效、准确的指关节内侧指纹识别。与传统方法和其他深度学习方法相比,该网络的模型复杂度更低,对计算资源的要求也更低,因此可以在较低的硬件配置下运行。此外,本文还利用四个手指的所有指关节指纹进行了串联融合识别。实验结果表明,该方法在内侧指关节指纹识别任务中取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
期刊最新文献
DTSIDNet: a discrete wavelet and transformer based network for single image denoising Multi-head attention with reinforcement learning for supervised video summarization End-to-end multitasking network for smart container product positioning and segmentation Generative object separation in X-ray images Toward effective local dimming-driven liquid crystal displays: a deep curve estimation–based adaptive compensation solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1