Fine-tuned Siamese neural network–based multimodal vein biometric system with hybrid firefly–particle swarm optimization

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Imaging Pub Date : 2024-08-01 DOI:10.1117/1.jei.33.4.043035
Gurunathan Velliangiri, Sudhakar Radhakrishnan
{"title":"Fine-tuned Siamese neural network–based multimodal vein biometric system with hybrid firefly–particle swarm optimization","authors":"Gurunathan Velliangiri, Sudhakar Radhakrishnan","doi":"10.1117/1.jei.33.4.043035","DOIUrl":null,"url":null,"abstract":"Recent advancements in biometric recognition focus on vein pattern–based person authentication systems. We present a multimodal biometric system using dorsal and finger vein images. By combining Siamese neural networks (SNNs) with hybrid firefly–particle swarm optimization (FF-PSO), we optimize finger and dorsal vein identification and classification. Using FF-PSO to tune SNN parameters is an innovative hybrid optimization approach designed to address the complexities of vein pattern recognition. The proposed system is tested with two public databases: the SDUMLA-HMT finger vein dataset and the Dr. Badawi hand vein dataset. The efficacy of the method is assessed using performance measures such as recall, accuracy, precision, F1 score, false acceptance rate, false rejection rate, and equal error rate. The experimental findings demonstrate that the proposed system achieves an accuracy of 99.5% with the fine-tune SNN and FF-PSO techniques and preprocessing module. The proposed system is also compared with various existing state-of-the-art techniques.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"42 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in biometric recognition focus on vein pattern–based person authentication systems. We present a multimodal biometric system using dorsal and finger vein images. By combining Siamese neural networks (SNNs) with hybrid firefly–particle swarm optimization (FF-PSO), we optimize finger and dorsal vein identification and classification. Using FF-PSO to tune SNN parameters is an innovative hybrid optimization approach designed to address the complexities of vein pattern recognition. The proposed system is tested with two public databases: the SDUMLA-HMT finger vein dataset and the Dr. Badawi hand vein dataset. The efficacy of the method is assessed using performance measures such as recall, accuracy, precision, F1 score, false acceptance rate, false rejection rate, and equal error rate. The experimental findings demonstrate that the proposed system achieves an accuracy of 99.5% with the fine-tune SNN and FF-PSO techniques and preprocessing module. The proposed system is also compared with various existing state-of-the-art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于暹罗神经网络的微调型多模态静脉生物识别系统与混合萤火虫-粒子群优化技术
生物识别技术的最新进展主要集中在基于静脉模式的身份验证系统上。我们提出了一种使用背静脉和手指静脉图像的多模态生物识别系统。通过将连体神经网络(SNN)与混合萤火虫-粒子群优化(FF-PSO)相结合,我们优化了手指和背静脉的识别和分类。使用 FF-PSO 调整 SNN 参数是一种创新的混合优化方法,旨在解决复杂的静脉模式识别问题。我们使用两个公共数据库对所提出的系统进行了测试:SDUMLA-HMT 手指静脉数据集和 Dr. Badawi 手部静脉数据集。使用召回率、准确率、精确度、F1 分数、错误接受率、错误拒绝率和相等错误率等性能指标评估了该方法的功效。实验结果表明,利用微调 SNN 和 FF-PSO 技术以及预处理模块,拟议系统的准确率达到了 99.5%。此外,还将提议的系统与现有的各种先进技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
期刊最新文献
DTSIDNet: a discrete wavelet and transformer based network for single image denoising Multi-head attention with reinforcement learning for supervised video summarization End-to-end multitasking network for smart container product positioning and segmentation Generative object separation in X-ray images Toward effective local dimming-driven liquid crystal displays: a deep curve estimation–based adaptive compensation solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1