{"title":"PI-PDA@PSF@TO composite coating toward multifunctional development: Self-lubrication, self-healing, and heat-resistance","authors":"","doi":"10.1016/j.porgcoat.2024.108723","DOIUrl":null,"url":null,"abstract":"<div><p>To facilitate versatile application of polyimide (PI) under harsh conditions, the PI-PDA@PSF@TO coating was successfully developed. The results illustrate the successful formation of PSF@TO microcapsules by encapsulating tung oil (TO) into polysulfone (PSF). After the modification of polydopamine (PDA), PDA@PSF@TO microcapsules exhibit superior dispersion within the coating compared to PSF@TO, resulting in a 16.8 % increase in tensile strength. Moreover, upon coating damage, the released TO can shield the samples in salt environment for a duration of 8 days. In comparison to PI, PI-PDA@PSF@TO coating exhibits a noteworthy decrease of 42.7 % in wear rate. Even after thermal oxidation, there is a noticeable reduction in the friction coefficient from 0.501 to 0.377, accompanied by a decrease in the wear rate from 6.33 × 10<sup>−7</sup> mm<sup>3</sup>N<sup>−1</sup> m<sup>−1</sup> to 3.31 × 10<sup>−7</sup> mm<sup>3</sup>N<sup>−1</sup> m<sup>−1</sup>. This improvement contributes to two factors: (I) The PDA@PSF@TO microcapsules, developed by PSF and PDA, achieves the stable storage of TO in PI. (II) The release of TO forms protective layers, which compensate for defects and provide excellent tribological properties, thereby demonstrating the self-lubrication and self-healing characteristics.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024005150","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
To facilitate versatile application of polyimide (PI) under harsh conditions, the PI-PDA@PSF@TO coating was successfully developed. The results illustrate the successful formation of PSF@TO microcapsules by encapsulating tung oil (TO) into polysulfone (PSF). After the modification of polydopamine (PDA), PDA@PSF@TO microcapsules exhibit superior dispersion within the coating compared to PSF@TO, resulting in a 16.8 % increase in tensile strength. Moreover, upon coating damage, the released TO can shield the samples in salt environment for a duration of 8 days. In comparison to PI, PI-PDA@PSF@TO coating exhibits a noteworthy decrease of 42.7 % in wear rate. Even after thermal oxidation, there is a noticeable reduction in the friction coefficient from 0.501 to 0.377, accompanied by a decrease in the wear rate from 6.33 × 10−7 mm3N−1 m−1 to 3.31 × 10−7 mm3N−1 m−1. This improvement contributes to two factors: (I) The PDA@PSF@TO microcapsules, developed by PSF and PDA, achieves the stable storage of TO in PI. (II) The release of TO forms protective layers, which compensate for defects and provide excellent tribological properties, thereby demonstrating the self-lubrication and self-healing characteristics.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.