Low-Overhead Iterative Channel Parameter Estimation for Multi-User OAM Wireless Backhaul

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Broadcasting Pub Date : 2024-08-01 DOI:10.1109/TBC.2024.3434676
Wen-Xuan Long;Nian Li;Yuan Liu;M. R. Bhavani Shankar;Rui Chen
{"title":"Low-Overhead Iterative Channel Parameter Estimation for Multi-User OAM Wireless Backhaul","authors":"Wen-Xuan Long;Nian Li;Yuan Liu;M. R. Bhavani Shankar;Rui Chen","doi":"10.1109/TBC.2024.3434676","DOIUrl":null,"url":null,"abstract":"This paper considers the issue of acquiring channel state information (CSI) for multi-user orbital angular momentum (MU-OAM) wireless backhaul between the macro base station (MBS) and small base stations (SBSs) within broadcasting networks. Unlike prior works, we assume that each SBS transmits a pilot signal of length one on each multiplexed OAM mode and subcarrier, resulting in the coherent observations collected at the MBS. Then, we construct the data sets using the coherent observations, the components of which independently contain arbitrarily assumed positional information. The amplitude-phase multiple signal classification (AP-MUSIC) algorithm, a novel variant of the MUSIC, then conducts a two-dimensional (2-D) search on the amplitude and phase of the data component in both the OAM mode and frequency domains for estimating positions at each iteration. These estimates, together with the observations, are used to iteratively update the data sets, ultimately refining the distances and AoAs of all SBSs. The theoretical analysis and simulation results indicate that this solution not only yields the precise CSI for the MU-OAM system, but also markedly reduces the training overhead, compared to existing alternatives.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 1","pages":"74-80"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620284","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10620284/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the issue of acquiring channel state information (CSI) for multi-user orbital angular momentum (MU-OAM) wireless backhaul between the macro base station (MBS) and small base stations (SBSs) within broadcasting networks. Unlike prior works, we assume that each SBS transmits a pilot signal of length one on each multiplexed OAM mode and subcarrier, resulting in the coherent observations collected at the MBS. Then, we construct the data sets using the coherent observations, the components of which independently contain arbitrarily assumed positional information. The amplitude-phase multiple signal classification (AP-MUSIC) algorithm, a novel variant of the MUSIC, then conducts a two-dimensional (2-D) search on the amplitude and phase of the data component in both the OAM mode and frequency domains for estimating positions at each iteration. These estimates, together with the observations, are used to iteratively update the data sets, ultimately refining the distances and AoAs of all SBSs. The theoretical analysis and simulation results indicate that this solution not only yields the precise CSI for the MU-OAM system, but also markedly reduces the training overhead, compared to existing alternatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多用户 OAM 无线回程的低开销迭代信道参数估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
期刊最新文献
Table of Contents IEEE Transactions on Broadcasting Information for Authors IEEE Transactions on Broadcasting Publication Information Digital Entity Management Methodology for Digital Twin Implementation: Concept, Definition, and Examples TV 3.0: An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1