In situ measurement of cross-section temperature field of pulverized coal boiler based on solving radiative transfer equation using a single image sensor

IF 5.3 2区 工程技术 Q2 ENERGY & FUELS Proceedings of the Combustion Institute Pub Date : 2024-08-01 DOI:10.1016/j.proci.2024.105655
Tianjiao Li, Zhichao Hu, Weijie Yan, Chun Lou, Dong Liu, Li Sun, Huaichun Zhou
{"title":"In situ measurement of cross-section temperature field of pulverized coal boiler based on solving radiative transfer equation using a single image sensor","authors":"Tianjiao Li, Zhichao Hu, Weijie Yan, Chun Lou, Dong Liu, Li Sun, Huaichun Zhou","doi":"10.1016/j.proci.2024.105655","DOIUrl":null,"url":null,"abstract":"This study introduces flame image processing techniques to extract both the temperature and radiation parameters in the furnace. Additionally, a two-dimensional rectangular furnace system is established with emitting and reflecting walls and emitting and scattering spatial media. The radiation imaging model, developed through the distributions of ratios of energy scattered or reflected method, establishes a quantitative functional relationship between monochromatic radiation intensity images of the flame at two wavelengths and internal furnace temperature and radiation parameters. The Tikhonov regularization algorithm is used to reconstruct the radiation source terms within the furnace. An optimization algorithm is used to reconstruct the temperature and radiation parameters within the furnace, assuming uniform absorption and scattering coefficients. Despite the non-uniform distribution of internal radiation parameters, reconstructing the furnace temperature distribution using uniform radiation parameters remains feasible. The maximum relative error in temperature reconstruction is 2.28 %, which meets industrial temperature measurement requirements. Moreover, experimental studies are conducted on a coal-fired boiler to simultaneously detect both furnace cross-sectional temperature and radiation parameters. A single detector is used to obtain data sequentially from eight observation ports. During this process, flame images are captured under stable boiler operating conditions. These data are used to reconstruct the cross-sectional temperature distribution and radiation parameters in the burnout air zone of the boiler under different load conditions. Experimental results indicate that as the boiler load increases from 147 to 159 MW, the furnace temperature, absorption coefficient, and scattering coefficient all increase. Notably, the flame imaging processing method serves as a reliable method for monitoring the cross-sectional temperature field and radiation parameters in the large coal-fired boilers and is crucial for obtaining the data required for numerical simulations of combustion in large furnaces.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105655","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces flame image processing techniques to extract both the temperature and radiation parameters in the furnace. Additionally, a two-dimensional rectangular furnace system is established with emitting and reflecting walls and emitting and scattering spatial media. The radiation imaging model, developed through the distributions of ratios of energy scattered or reflected method, establishes a quantitative functional relationship between monochromatic radiation intensity images of the flame at two wavelengths and internal furnace temperature and radiation parameters. The Tikhonov regularization algorithm is used to reconstruct the radiation source terms within the furnace. An optimization algorithm is used to reconstruct the temperature and radiation parameters within the furnace, assuming uniform absorption and scattering coefficients. Despite the non-uniform distribution of internal radiation parameters, reconstructing the furnace temperature distribution using uniform radiation parameters remains feasible. The maximum relative error in temperature reconstruction is 2.28 %, which meets industrial temperature measurement requirements. Moreover, experimental studies are conducted on a coal-fired boiler to simultaneously detect both furnace cross-sectional temperature and radiation parameters. A single detector is used to obtain data sequentially from eight observation ports. During this process, flame images are captured under stable boiler operating conditions. These data are used to reconstruct the cross-sectional temperature distribution and radiation parameters in the burnout air zone of the boiler under different load conditions. Experimental results indicate that as the boiler load increases from 147 to 159 MW, the furnace temperature, absorption coefficient, and scattering coefficient all increase. Notably, the flame imaging processing method serves as a reliable method for monitoring the cross-sectional temperature field and radiation parameters in the large coal-fired boilers and is crucial for obtaining the data required for numerical simulations of combustion in large furnaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用单个图像传感器,在求解辐射传递方程的基础上,现场测量煤粉锅炉的横截面温度场
本研究采用火焰图像处理技术来提取炉内的温度和辐射参数。此外,还建立了一个二维矩形炉系统,该系统包含发射壁和反射壁以及发射和散射空间介质。通过散射或反射能量比率分布法建立的辐射成像模型,在两个波长的火焰单色辐射强度图像与炉内温度和辐射参数之间建立了定量函数关系。提霍诺夫正则化算法用于重建炉内辐射源项。假设吸收和散射系数均匀,则使用优化算法重建炉内温度和辐射参数。尽管内部辐射参数分布不均匀,但使用均匀辐射参数重建炉内温度分布仍然是可行的。温度重建的最大相对误差为 2.28%,符合工业温度测量要求。此外,还对燃煤锅炉进行了实验研究,以同时检测炉膛截面温度和辐射参数。使用单个探测器从八个观测端口顺序获取数据。在此过程中,可在稳定的锅炉运行条件下捕捉火焰图像。这些数据用于重建不同负荷条件下锅炉燃尽空气区的横截面温度分布和辐射参数。实验结果表明,随着锅炉负荷从 147 兆瓦增加到 159 兆瓦,炉膛温度、吸收系数和散射系数都会增加。值得注意的是,火焰成像处理方法是监测大型燃煤锅炉截面温度场和辐射参数的可靠方法,对于获得大型炉膛燃烧数值模拟所需的数据至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
期刊最新文献
Modelling collision frequencies and predicting bi-variate agglomerate size distributions for bi-disperse primary particle systems Experimental research on radiation blockage of the fuel vapor and flame in pool fires Micron-sized iron particles as energy carrier: Cycling experiments in a fixed-bed reactor On the inclusion of preferential diffusion effects for PAH tabulation in turbulent non-premixed ethylene/air sooting flames Machine learning assisted characterisation and prediction of droplet distributions in a liquid jet in cross-flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1