Three-dimensional geometrical effects on the near-wall quenching of turbulent premixed flame

IF 5.3 2区 工程技术 Q2 ENERGY & FUELS Proceedings of the Combustion Institute Pub Date : 2024-07-24 DOI:10.1016/j.proci.2024.105629
Ye Wang, Mamoru Tanahashi
{"title":"Three-dimensional geometrical effects on the near-wall quenching of turbulent premixed flame","authors":"Ye Wang, Mamoru Tanahashi","doi":"10.1016/j.proci.2024.105629","DOIUrl":null,"url":null,"abstract":"The three-dimensional geometric structure of near-wall flame and its effect on the near-wall flame quenching characteristics have been investigated using direct numerical simulation data of a V-shaped H-air flame in turbulent channel flow. The principal curvatures of the flame are calculated to categorize various flame structures. Additionally, the quenching status of the near-wall flame is evaluated based on a local fuel consumption speed, derived by integrating the fuel reaction rate across the local flame element. The results show that, there is a significant change in the statistical characteristics of the flame’s structure as it approaches the wall: flat flames predominate in the far-wall region, while cylindrical-shaped flames are more prevalent in the near-wall regions which align with the buffer layer and linear sublayer of the corresponding non-reacting turbulent boundary layer. A notable transition is observed from a turbulence-driven to a wall-driven influence on the flame’s geometric structure within the buffer layer. Meanwhile, the spherical and cylindrical flames convex towards the burned side, which are initially characterized by high reactivity in the far-wall area, exhibit a significant reduction in reaction rate within buffer layer. This leads to a shift in the general relationship between flame curvature and reactivity from a positive to a negative correlation. Furthermore, it has been found that the flame gets near-wall quenched mostly with a cylindrical surface. And, the flame elements convex towards the burned gas exhibit longer quenching distances and lower levels of wall heat flux compared to those with other geometric structures. The current results underscore the impact of flame’s geometric structure on its near-wall quenching characteristics. Future work will focus on investigating these findings in near-wall combustion under various turbulent conditions and different wall-bounded combustion configurations.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105629","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The three-dimensional geometric structure of near-wall flame and its effect on the near-wall flame quenching characteristics have been investigated using direct numerical simulation data of a V-shaped H-air flame in turbulent channel flow. The principal curvatures of the flame are calculated to categorize various flame structures. Additionally, the quenching status of the near-wall flame is evaluated based on a local fuel consumption speed, derived by integrating the fuel reaction rate across the local flame element. The results show that, there is a significant change in the statistical characteristics of the flame’s structure as it approaches the wall: flat flames predominate in the far-wall region, while cylindrical-shaped flames are more prevalent in the near-wall regions which align with the buffer layer and linear sublayer of the corresponding non-reacting turbulent boundary layer. A notable transition is observed from a turbulence-driven to a wall-driven influence on the flame’s geometric structure within the buffer layer. Meanwhile, the spherical and cylindrical flames convex towards the burned side, which are initially characterized by high reactivity in the far-wall area, exhibit a significant reduction in reaction rate within buffer layer. This leads to a shift in the general relationship between flame curvature and reactivity from a positive to a negative correlation. Furthermore, it has been found that the flame gets near-wall quenched mostly with a cylindrical surface. And, the flame elements convex towards the burned gas exhibit longer quenching distances and lower levels of wall heat flux compared to those with other geometric structures. The current results underscore the impact of flame’s geometric structure on its near-wall quenching characteristics. Future work will focus on investigating these findings in near-wall combustion under various turbulent conditions and different wall-bounded combustion configurations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
湍流预混火焰近壁淬火的三维几何效应
利用湍流通道流中 V 形 H 空气火焰的直接数值模拟数据,研究了近壁火焰的三维几何结构及其对近壁火焰熄灭特性的影响。通过计算火焰的主曲率,对各种火焰结构进行了分类。此外,还根据局部燃料消耗速度评估了近壁火焰的熄灭状态,该速度是通过对局部火焰元素的燃料反应速率进行积分而得出的。结果表明,当火焰接近壁面时,其结构的统计特征发生了显著变化:扁平火焰在远壁区域占主导地位,而圆柱形火焰在近壁区域更为普遍,近壁区域与相应的非反应湍流边界层的缓冲层和线性子层相一致。在缓冲层内,火焰的几何结构明显从湍流驱动过渡到壁面驱动。同时,凸向燃烧侧的球形和圆柱形火焰最初在远壁区域具有高反应性,但在缓冲层内的反应速率显著降低。这导致火焰曲率与反应率之间的一般关系从正相关转变为负相关。此外,研究还发现,近壁淬火的火焰多为圆柱形表面。而且,与其他几何结构的火焰相比,凸向燃烧气体的火焰元素表现出更长的淬火距离和更低的壁面热通量水平。目前的研究结果强调了火焰的几何结构对其近壁淬火特性的影响。未来的工作将重点研究在各种湍流条件和不同壁面燃烧配置下的近壁燃烧中的这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
期刊最新文献
Modelling collision frequencies and predicting bi-variate agglomerate size distributions for bi-disperse primary particle systems Experimental research on radiation blockage of the fuel vapor and flame in pool fires Micron-sized iron particles as energy carrier: Cycling experiments in a fixed-bed reactor On the inclusion of preferential diffusion effects for PAH tabulation in turbulent non-premixed ethylene/air sooting flames Machine learning assisted characterisation and prediction of droplet distributions in a liquid jet in cross-flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1