{"title":"Managing product-inherent constraints with artificial intelligence: production control for time constraints in semiconductor manufacturing","authors":"Marvin Carl May, Jan Oberst, Gisela Lanza","doi":"10.1007/s10845-024-02472-6","DOIUrl":null,"url":null,"abstract":"<p>Continuous product individualization and customization led to the advent of lot size one in production and ultimately to product-inherent uniqueness. As complexities in individualization and processes grow, production systems need to adapt to unique, product-inherent constraints by advancing production control beyond predictive, rigid schedules. While complex processes, production systems and production constraints are not a novelty per se, modern production control approaches fall short of simultaneously regarding the flexibility of complex job shops and product unique constraints imposed on production control. To close this gap, this paper develops a novel, data driven, artificial intelligence based production control approach for complex job shops. For this purpose, product-inherent constraints are resolved by restricting the solution space of the production control according to a prediction based decision model. The approach validation is performed in a real semiconductor fab as a job shop that includes transitional time constraints as product-inherent constraints. Not violating these time constraints is essential to avoid scrap and similarly increase quality-based yield. To that end, transition times are forecasted and the adherence to these product-inherent constraints is evaluated based on one-sided prediction intervals and point estimators. The inclusion of product-inherent constraints leads to significant adherence improvements in the production system as indicated in the real-world semiconductor manufacturing case study and, hence, contributes a novel, data driven approach for production control. As a conclusion, the ability to avoid a large majority of violations of time constraints shows the approaches effectiveness and the future requirement to more accurately integrate such product-inherent constraints into production control.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"36 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02472-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous product individualization and customization led to the advent of lot size one in production and ultimately to product-inherent uniqueness. As complexities in individualization and processes grow, production systems need to adapt to unique, product-inherent constraints by advancing production control beyond predictive, rigid schedules. While complex processes, production systems and production constraints are not a novelty per se, modern production control approaches fall short of simultaneously regarding the flexibility of complex job shops and product unique constraints imposed on production control. To close this gap, this paper develops a novel, data driven, artificial intelligence based production control approach for complex job shops. For this purpose, product-inherent constraints are resolved by restricting the solution space of the production control according to a prediction based decision model. The approach validation is performed in a real semiconductor fab as a job shop that includes transitional time constraints as product-inherent constraints. Not violating these time constraints is essential to avoid scrap and similarly increase quality-based yield. To that end, transition times are forecasted and the adherence to these product-inherent constraints is evaluated based on one-sided prediction intervals and point estimators. The inclusion of product-inherent constraints leads to significant adherence improvements in the production system as indicated in the real-world semiconductor manufacturing case study and, hence, contributes a novel, data driven approach for production control. As a conclusion, the ability to avoid a large majority of violations of time constraints shows the approaches effectiveness and the future requirement to more accurately integrate such product-inherent constraints into production control.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.