{"title":"Characterization of the Ge@GeO2-C Composite Anode Synthesized Using a Simple High-Energy Ball-Milling Process for Li-Ion Batteries","authors":"Hyun Woo Kim, Jinhyup Han","doi":"10.1007/s11814-024-00245-8","DOIUrl":null,"url":null,"abstract":"<div><p>To address the limitations of the current anodes of Li<sup>+</sup>-ion batteries (LIBs), a Ge/GeO<sub>2</sub>/carbon (Ge@GeO<sub>2</sub>-C) composite was designed by introducing a high-energy ball-milling process for advanced LIBs. Ge@GeO<sub>2</sub>-C is prepared and characterized by XPS, XRD, SEM, and TEM, which facilitate synthesis and provide controllability with respect to milling time. Interestingly, as the ball-milling time increased, the proportion of metallic Ge increased during the carbon thermal reduction reaction. The electrochemical characteristics of Ge@GeO<sub>2</sub>-C are assessed using differential capacity analysis (dQ/dV) and galvanostatic charge–discharge techniques to confirm its viability as an anode material in LIBs. The results demonstrate decent initial and secondary capacities of approximately 1800 mAh g<sup>−1</sup> (for the first cycle) and 838 mAh g<sup>−1</sup> (for the second cycle) at a rate of C/60 by the reaction between Ge and the Li–Ge complex. Furthermore, post-mortem characterization was performed to gain an understanding of the material, suggesting future prospects for advanced LIBs.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 11","pages":"3019 - 3026"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00245-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To address the limitations of the current anodes of Li+-ion batteries (LIBs), a Ge/GeO2/carbon (Ge@GeO2-C) composite was designed by introducing a high-energy ball-milling process for advanced LIBs. Ge@GeO2-C is prepared and characterized by XPS, XRD, SEM, and TEM, which facilitate synthesis and provide controllability with respect to milling time. Interestingly, as the ball-milling time increased, the proportion of metallic Ge increased during the carbon thermal reduction reaction. The electrochemical characteristics of Ge@GeO2-C are assessed using differential capacity analysis (dQ/dV) and galvanostatic charge–discharge techniques to confirm its viability as an anode material in LIBs. The results demonstrate decent initial and secondary capacities of approximately 1800 mAh g−1 (for the first cycle) and 838 mAh g−1 (for the second cycle) at a rate of C/60 by the reaction between Ge and the Li–Ge complex. Furthermore, post-mortem characterization was performed to gain an understanding of the material, suggesting future prospects for advanced LIBs.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.