Li Guan , Shengjie Zhang , Pengfei Song , Yanxin Xia , Xinle Zheng , Weize Li
{"title":"Novel bibenzyl compound Ae exhibits anti-agiogenic activity in HUVECs in vitro and zebrafish in vivo","authors":"Li Guan , Shengjie Zhang , Pengfei Song , Yanxin Xia , Xinle Zheng , Weize Li","doi":"10.1016/j.bmc.2024.117866","DOIUrl":null,"url":null,"abstract":"<div><p>The inhibition of angiogenesis has been considered as an attractive method for the discovery of potential anti-cancer drugs. Herein, we report our new synthesized bibenzyl compound Ae had potent anti-angiogenic activity(the lowest effective concentration is to 0.62–1.25 μM) in zebrafish <em>in vivo</em> and showed a concentration-dependent inhibition of inter-segmental blood vessels (ISVs) compared to control. Further, Ae exhibited the obvious inhibitory activity of proliferation, migration, invasion and tube formation in HUVEC cells <em>in vitro</em>. Moreover, qRT-PCR analysis revealed that the anti-angiogenic activity of compound Ae is connected with the <em>ang-2</em>, <em>tek</em> in ANGPT-TEK pathway and the <em>kdr, kdrl</em> signaling axle in VEGF-VEGFR pathway. Molecular docking studies revealed that compound Ae had an interaction with the angiopoietin-2 receptor(TEK) and VEGFR2. Additionally, analysis of the ADMET prediction data indicated that compound Ae possessed favorable physicochemical properties, drug-likeness, and synthetic accessibility. In conclusion, compound Ae had remarkable anti-angiogenic activity and could be served as an candidate for cancer therapy.</p></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"111 ","pages":"Article 117866"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624002803","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inhibition of angiogenesis has been considered as an attractive method for the discovery of potential anti-cancer drugs. Herein, we report our new synthesized bibenzyl compound Ae had potent anti-angiogenic activity(the lowest effective concentration is to 0.62–1.25 μM) in zebrafish in vivo and showed a concentration-dependent inhibition of inter-segmental blood vessels (ISVs) compared to control. Further, Ae exhibited the obvious inhibitory activity of proliferation, migration, invasion and tube formation in HUVEC cells in vitro. Moreover, qRT-PCR analysis revealed that the anti-angiogenic activity of compound Ae is connected with the ang-2, tek in ANGPT-TEK pathway and the kdr, kdrl signaling axle in VEGF-VEGFR pathway. Molecular docking studies revealed that compound Ae had an interaction with the angiopoietin-2 receptor(TEK) and VEGFR2. Additionally, analysis of the ADMET prediction data indicated that compound Ae possessed favorable physicochemical properties, drug-likeness, and synthetic accessibility. In conclusion, compound Ae had remarkable anti-angiogenic activity and could be served as an candidate for cancer therapy.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.