{"title":"Emerging Analytical Approaches for Personalized Medicine Using Machine Learning In Pediatric and Congenital Heart Disease","authors":"","doi":"10.1016/j.cjca.2024.07.026","DOIUrl":null,"url":null,"abstract":"<div><div>Precision and personalized medicine, the process by which patient management is tailored to individual circumstances, are now terms that are familiar to cardiologists, despite it still being an emerging field. Although precision medicine relies most often on the underlying biology and pathophysiology of a patient’s condition, personalized medicine relies on digital biomarkers generated through algorithms. Given the complexity of the underlying data, these digital biomarkers are most often generated through machine-learning algorithms. There are a number of analytic considerations regarding the creation of digital biomarkers that are discussed in this review, including data preprocessing, time dependency and gating, dimensionality reduction, and novel methods, both in the realm of supervised and unsupervised machine learning. Some of these considerations, such as sample size requirements and measurements of model performance, are particularly challenging in small and heterogeneous populations with rare outcomes such as children with congenital heart disease. Finally, we review analytic considerations for the deployment of digital biomarkers in clinical settings, including the emerging field of clinical artificial intelligence (AI) operations, computational needs for deployment, efforts to increase the explainability of AI, algorithmic drift, and the needs for distributed surveillance and federated learning. We conclude this review by discussing a recent simulation study that shows that, despite these analytic challenges and complications, the use of digital biomarkers in managing clinical care might have substantial benefits regarding individual patient outcomes.</div></div>","PeriodicalId":9555,"journal":{"name":"Canadian Journal of Cardiology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0828282X24005853","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Precision and personalized medicine, the process by which patient management is tailored to individual circumstances, are now terms that are familiar to cardiologists, despite it still being an emerging field. Although precision medicine relies most often on the underlying biology and pathophysiology of a patient’s condition, personalized medicine relies on digital biomarkers generated through algorithms. Given the complexity of the underlying data, these digital biomarkers are most often generated through machine-learning algorithms. There are a number of analytic considerations regarding the creation of digital biomarkers that are discussed in this review, including data preprocessing, time dependency and gating, dimensionality reduction, and novel methods, both in the realm of supervised and unsupervised machine learning. Some of these considerations, such as sample size requirements and measurements of model performance, are particularly challenging in small and heterogeneous populations with rare outcomes such as children with congenital heart disease. Finally, we review analytic considerations for the deployment of digital biomarkers in clinical settings, including the emerging field of clinical artificial intelligence (AI) operations, computational needs for deployment, efforts to increase the explainability of AI, algorithmic drift, and the needs for distributed surveillance and federated learning. We conclude this review by discussing a recent simulation study that shows that, despite these analytic challenges and complications, the use of digital biomarkers in managing clinical care might have substantial benefits regarding individual patient outcomes.
期刊介绍:
The Canadian Journal of Cardiology (CJC) is the official journal of the Canadian Cardiovascular Society (CCS). The CJC is a vehicle for the international dissemination of new knowledge in cardiology and cardiovascular science, particularly serving as the major venue for Canadian cardiovascular medicine.