Cost Optimisation of Individual-Based Institutional Reward Incentives for Promoting Cooperation in Finite Populations.

IF 2.2 4区 数学 Q2 BIOLOGY Bulletin of Mathematical Biology Pub Date : 2024-08-05 DOI:10.1007/s11538-024-01344-7
M H Duong, C M Durbac, T A Han
{"title":"Cost Optimisation of Individual-Based Institutional Reward Incentives for Promoting Cooperation in Finite Populations.","authors":"M H Duong, C M Durbac, T A Han","doi":"10.1007/s11538-024-01344-7","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we study the problem of cost optimisation of individual-based institutional incentives (reward, punishment, and hybrid) for guaranteeing a certain minimal level of cooperative behaviour in a well-mixed, finite population. In this scheme, the individuals in the population interact via cooperation dilemmas (Donation Game or Public Goods Game) in which institutional reward is carried out only if cooperation is not abundant enough (i.e., the number of cooperators is below a threshold <math><mrow><mn>1</mn> <mo>≤</mo> <mi>t</mi> <mo>≤</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn></mrow> </math> , where N is the population size); and similarly, institutional punishment is carried out only when defection is too abundant. We study analytically the cases <math><mrow><mi>t</mi> <mo>=</mo> <mn>1</mn></mrow> </math> for the reward incentive under the small mutation limit assumption and two different initial states, showing that the cost function is always non-decreasing. We derive the neutral drift and strong selection limits when the intensity of selection tends to zero and infinity, respectively. We numerically investigate the problem for other values of t and for population dynamics with arbitrary mutation rates.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 9","pages":"115"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300551/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01344-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the problem of cost optimisation of individual-based institutional incentives (reward, punishment, and hybrid) for guaranteeing a certain minimal level of cooperative behaviour in a well-mixed, finite population. In this scheme, the individuals in the population interact via cooperation dilemmas (Donation Game or Public Goods Game) in which institutional reward is carried out only if cooperation is not abundant enough (i.e., the number of cooperators is below a threshold 1 t N - 1 , where N is the population size); and similarly, institutional punishment is carried out only when defection is too abundant. We study analytically the cases t = 1 for the reward incentive under the small mutation limit assumption and two different initial states, showing that the cost function is always non-decreasing. We derive the neutral drift and strong selection limits when the intensity of selection tends to zero and infinity, respectively. We numerically investigate the problem for other values of t and for population dynamics with arbitrary mutation rates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
促进有限人群合作的基于个人的制度奖励激励的成本优化。
在本文中,我们研究了基于个体的制度激励(奖励、惩罚和混合)的成本优化问题,以保证在混合良好的有限种群中合作行为达到一定的最低水平。在这一方案中,种群中的个体通过合作困境(捐赠博弈或公共物品博弈)进行互动,只有当合作不够充分时(即合作者数量低于临界值 1 ≤ t ≤ N - 1,其中 N 为种群数量),才会进行制度奖励;同样,只有当叛逃过于充分时,才会进行制度惩罚。我们对小突变极限假设和两种不同初始状态下奖励激励的 t = 1 情况进行了分析研究,结果表明成本函数总是不递减的。当选择强度趋于零和无穷大时,我们分别推导出了中性漂移和强选择极限。我们对其他 t 值和任意突变率的种群动态进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
期刊最新文献
Promoter Architecture as a Design Principle for Buffering Transcriptional Noise and Diversifying Expression Patterns. The influence of cell phenotype on collective cell invasion into the extracellular matrix. Immune Modulation in the Tumor Microenvironment: Bifurcation Analysis of Cancer-CTL-Monocyte Dynamics. Beyond Bayesian Inference: The Correlation Integral Likelihood Framework and Gradient Flow Methods for Deterministic Sampling. Mathematical Modeling of the role of IL-23/Th17 in Asthma Pathogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1