Min Kyoung Kam, Su-Min Jung, Ga Eun Lee, Sung Woo Lee, Hong Jun Lee, Young-Ho Park, Dong-Seok Lee
{"title":"Mitofusin 1 and 2 overexpression reduces AβO-mediated ER stress and apoptosis in N2a APPswe cells.","authors":"Min Kyoung Kam, Su-Min Jung, Ga Eun Lee, Sung Woo Lee, Hong Jun Lee, Young-Ho Park, Dong-Seok Lee","doi":"10.14715/cmb/2024.70.7.2","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common neurodegenerative disorder, and amyloid beta oligomers (AβO), which are pathological markers of AD, are known to be highly toxic. AβO increase mitochondrial dysfunction, which is accompanied by a decrease in mitochondrial fusion. Although mitofusin (Mfn) 1 and Mfn2 are mitochondrial fusion proteins, Mfn2 is known to regulate endoplasmic reticulum (ER) function, as it is located in the ER. Several studies have shown that AβO exacerbates ER stress, however, the exact mechanism requires further elucidation. In this study, we used mouse neuroblastoma cells stably overexpressing the amyloid precursor protein (APP) with the Swedish mutation (N2a APPswe cells) to investigate the role of Mfn in ER stress. Our results revealed that amyloid beta (Aβ) caused cellular toxicity in N2a APPswe cells, upregulated ER stress-related proteins, and promoted ER expansion. The AβO-mediated ER stress was reduced when Mfn1 and Mfn2 were overexpressed. Moreover, Mfn1 and Mfn2 overexpressed resulted in reduced apoptosis of N2a APPswe cells. In conclusion, our results indicate that both Mfn1 and Mfn2 reduce ER stress and apoptosis. Our data provide a foundation for future studies on the roles of Mfn1 and Mfn2 in the molecular mechanisms underlying AβO-mediated ER stress and the pathogenesis of AD.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14715/cmb/2024.70.7.2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, and amyloid beta oligomers (AβO), which are pathological markers of AD, are known to be highly toxic. AβO increase mitochondrial dysfunction, which is accompanied by a decrease in mitochondrial fusion. Although mitofusin (Mfn) 1 and Mfn2 are mitochondrial fusion proteins, Mfn2 is known to regulate endoplasmic reticulum (ER) function, as it is located in the ER. Several studies have shown that AβO exacerbates ER stress, however, the exact mechanism requires further elucidation. In this study, we used mouse neuroblastoma cells stably overexpressing the amyloid precursor protein (APP) with the Swedish mutation (N2a APPswe cells) to investigate the role of Mfn in ER stress. Our results revealed that amyloid beta (Aβ) caused cellular toxicity in N2a APPswe cells, upregulated ER stress-related proteins, and promoted ER expansion. The AβO-mediated ER stress was reduced when Mfn1 and Mfn2 were overexpressed. Moreover, Mfn1 and Mfn2 overexpressed resulted in reduced apoptosis of N2a APPswe cells. In conclusion, our results indicate that both Mfn1 and Mfn2 reduce ER stress and apoptosis. Our data provide a foundation for future studies on the roles of Mfn1 and Mfn2 in the molecular mechanisms underlying AβO-mediated ER stress and the pathogenesis of AD.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.