MicroRNA-216a-5p Alleviates Acute Kidney Injury of Mice via Suppressing FAS Ligand Expression.

IF 1.7 4区 医学 Q2 SURGERY European Surgical Research Pub Date : 2024-01-01 Epub Date: 2024-08-02 DOI:10.1159/000539980
Biying Zhou, Ruirui Luo, Yanlin Sun, Aixiang Yang
{"title":"MicroRNA-216a-5p Alleviates Acute Kidney Injury of Mice via Suppressing FAS Ligand Expression.","authors":"Biying Zhou, Ruirui Luo, Yanlin Sun, Aixiang Yang","doi":"10.1159/000539980","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The aim of this present work was to investigate the mechanism of the microRNA (miR)-216a-5p/FASL axis in mice with acute kidney injury (AKI).</p><p><strong>Methods: </strong>Mice kidney ischemia/reperfusion (I/R) injury was used as AKI models in this study. I/R mice were injected with miR-216a-5p- and FASL-related constructs to investigate potential mechanisms of kidney protection. Kidney function, inflammation, oxidative stress, and kidney cell apoptosis were assessed after 24 h of reperfusion. In vitro, the hypoxia-reoxygenation (H/R) model was used with kidney tubular epithelial cells (TECs) to mimic kidney I/R injury. H/R-treated TECs were transfected with miR-216a-5p- and FASL-related constructs to detect cell viability, inflammation, and oxidative stress. MiR-216a-5p and FASL expression levels in mouse kidney tissues and in H/R-treated TECs were detected.</p><p><strong>Results: </strong>MiR-216a-5p was downregulated and FASL was upregulated in kidney tissues of I/R mice and H/R-treated TECs. Upregulating miR-216a-5p attenuated kidney cell apoptosis and the damage of kidney function, and reduced inflammatory factor levels and oxidative stress response in kidney tissues of I/R mice. Upregulating miR-216a-5p advanced cell viability and reduced inflammatory factor levels and oxidative stress response in H/R-treated TECs. Downregulation of FASL effectively reversed the influences of downregulation of miR-216a-5p on kidney injury in mice and kidney TEC survival.</p><p><strong>Conclusion: </strong>Our study reveals that miR-216a-5p reduces I/R-induced pathological kidney damage in AKI via suppressing FASL.</p>","PeriodicalId":12222,"journal":{"name":"European Surgical Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Surgical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539980","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The aim of this present work was to investigate the mechanism of the microRNA (miR)-216a-5p/FASL axis in mice with acute kidney injury (AKI).

Methods: Mice kidney ischemia/reperfusion (I/R) injury was used as AKI models in this study. I/R mice were injected with miR-216a-5p- and FASL-related constructs to investigate potential mechanisms of kidney protection. Kidney function, inflammation, oxidative stress, and kidney cell apoptosis were assessed after 24 h of reperfusion. In vitro, the hypoxia-reoxygenation (H/R) model was used with kidney tubular epithelial cells (TECs) to mimic kidney I/R injury. H/R-treated TECs were transfected with miR-216a-5p- and FASL-related constructs to detect cell viability, inflammation, and oxidative stress. MiR-216a-5p and FASL expression levels in mouse kidney tissues and in H/R-treated TECs were detected.

Results: MiR-216a-5p was downregulated and FASL was upregulated in kidney tissues of I/R mice and H/R-treated TECs. Upregulating miR-216a-5p attenuated kidney cell apoptosis and the damage of kidney function, and reduced inflammatory factor levels and oxidative stress response in kidney tissues of I/R mice. Upregulating miR-216a-5p advanced cell viability and reduced inflammatory factor levels and oxidative stress response in H/R-treated TECs. Downregulation of FASL effectively reversed the influences of downregulation of miR-216a-5p on kidney injury in mice and kidney TEC survival.

Conclusion: Our study reveals that miR-216a-5p reduces I/R-induced pathological kidney damage in AKI via suppressing FASL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
microRNA-216a-5p 通过抑制 FASL 的表达减轻小鼠急性肾损伤。
引言本研究旨在探讨急性肾损伤(AKI)小鼠体内microRNA(miR)-216a-5p/FASL轴的作用机制:方法:本研究以小鼠肾脏缺血再灌注(I/R)损伤为 AKI 模型。再灌注 24 小时后评估肾功能、炎症、氧化应激和肾细胞凋亡。在体外,利用肾小管上皮细胞(TECs)的低氧-复氧(H/R)模型模拟肾脏I/R损伤。结果:在I/R小鼠肾组织和H/R处理的TECs中,miR-216a-5p下调,FASL上调。上调 miR-216a-5p 可减轻 I/R 小鼠肾脏组织中肾细胞凋亡和肾功能损伤,降低炎症因子水平和氧化应激反应。上调miR-216a-5p可提高H/R处理的TECs细胞活力,降低炎症因子水平和氧化应激反应。下调FASL可有效逆转下调miR-216a-5p对小鼠肾损伤和肾脏TEC存活的影响:我们的研究发现,miR-216a-5p可通过抑制FASL减轻I/R诱导的AKI病理肾损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
6.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: ''European Surgical Research'' features original clinical and experimental papers, condensed reviews of new knowledge relevant to surgical research, and short technical notes serving the information needs of investigators in various fields of operative medicine. Coverage includes surgery, surgical pathophysiology, drug usage, and new surgical techniques. Special consideration is given to information on the use of animal models, physiological and biological methods as well as biophysical measuring and recording systems. The journal is of particular value for workers interested in pathophysiologic concepts, new techniques and in how these can be introduced into clinical work or applied when critical decisions are made concerning the use of new procedures or drugs.
期刊最新文献
Conversion Rates, Causes and Preoperative Associated Factors in 3411 Laparoscopic Appendectomies: Insights after nearly three decades of laparoscopy and an analysis of the Learning Curve. Intestinal mucosal perfusion and integrity are maintained in hypotensive brain dead mice. Rationale and Trial Protocol for a Double-Blinded Randomized Controlled Trial to assess the Impact of a Concomitant Crural Repair during Laparoscopic Sleeve Gastrectomy in Patients with a Lax Gastroesophageal Junction without Frank Hiatal Hernia (REPAIR trial protocol). Recycling transplanted organs: An exceptional case and literature review. Artificial Intelligence in Surgery: The Future is Now.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1