Toxicological effects of Honokiol on zebrafish and its underlying mechanism

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biochemical and Molecular Toxicology Pub Date : 2024-08-03 DOI:10.1002/jbt.23789
Jue Lin, Hongli Liu, Xiaoli Huang, Yongqiang Deng
{"title":"Toxicological effects of Honokiol on zebrafish and its underlying mechanism","authors":"Jue Lin,&nbsp;Hongli Liu,&nbsp;Xiaoli Huang,&nbsp;Yongqiang Deng","doi":"10.1002/jbt.23789","DOIUrl":null,"url":null,"abstract":"<p>The compound Honokiol, derived from the bark of <i>Magnolia officinalis</i>, possesses the ability to induce apoptosis and inhibit cellular damage caused by reactive oxygen species. The objective of this study was to investigate the toxicological and histopathological effects of Honokiol on zebrafish (<i>Danio rerio</i>) through conducting a semistatic acute toxicity test involving immersion in an Honokiol-containing solution. The results showed that the toxic effects of Honokiol on zebrafish were primarily manifested in the liver and gills. When exposed to 0.6 mg/L of Honokiol, it could lead to liver hemorrhage as well as swelling and necrosis of gill tissues, and high concentrations of Honokiol could trigger inflammatory responses. Additionally, research found that Honokiol could induce apoptosis in liver and gill tissues through the P53 pathway and possessed the ability to enhance antioxidation. The present findings significantly contribute to a more profound understanding of the toxic impact of Honokiol and its underlying mechanism, thereby providing a valuable reference for the future safe utilization of Honokiol and related pharmaceutical advancements.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23789","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The compound Honokiol, derived from the bark of Magnolia officinalis, possesses the ability to induce apoptosis and inhibit cellular damage caused by reactive oxygen species. The objective of this study was to investigate the toxicological and histopathological effects of Honokiol on zebrafish (Danio rerio) through conducting a semistatic acute toxicity test involving immersion in an Honokiol-containing solution. The results showed that the toxic effects of Honokiol on zebrafish were primarily manifested in the liver and gills. When exposed to 0.6 mg/L of Honokiol, it could lead to liver hemorrhage as well as swelling and necrosis of gill tissues, and high concentrations of Honokiol could trigger inflammatory responses. Additionally, research found that Honokiol could induce apoptosis in liver and gill tissues through the P53 pathway and possessed the ability to enhance antioxidation. The present findings significantly contribute to a more profound understanding of the toxic impact of Honokiol and its underlying mechanism, thereby providing a valuable reference for the future safe utilization of Honokiol and related pharmaceutical advancements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Honokiol对斑马鱼的毒理效应及其内在机制
从厚朴树皮中提取的化合物 Honokiol 具有诱导细胞凋亡和抑制活性氧导致的细胞损伤的能力。本研究的目的是通过在含 Honokiol 的溶液中进行半静态急性毒性试验,研究 Honokiol 对斑马鱼(Danio rerio)的毒理学和组织病理学影响。结果表明,Honokiol 对斑马鱼的毒性作用主要表现在肝脏和鳃上。当暴露于 0.6 毫克/升的 Honokiol 时,会导致肝脏出血以及鳃组织肿胀和坏死,高浓度的 Honokiol 会引发炎症反应。此外,研究还发现,Honokiol 可通过 P53 途径诱导肝脏和鳃组织凋亡,并具有增强抗氧化能力的作用。本研究成果有助于人们更深入地了解红没药醇的毒性影响及其内在机制,从而为今后安全利用红没药醇及相关药物的研发提供宝贵的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
期刊最新文献
RETRACTION: Enhanced Chemotherapeutic Efficacy of Docetaxel in Human Lung Cancer Cell Line via GLUT1 Inhibitor. Elucidating the interplay of PPAR gamma inhibition and energy demand in adriamycin-induced cardiomyopathy: In Vitro and In Vivo perspective USP1-mediated deubiquitination of KDM1A promotes the malignant progression of triple-negative breast cancer The ameliorative effect of carvacrol on sodium arsenite-induced hepatotoxicity in rats: Possible role of Nrf2/HO-1, RAGE/NLRP3, Bax/Bcl-2/Caspase-3, and Beclin-1 pathways Sub-acute bisphenol A exposure induces proteomic alterations and impairs male reproductive health in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1