In vivo mapping of the mouse Galnt3-specific O-glycoproteome.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Chemistry Pub Date : 2024-09-01 Epub Date: 2024-08-02 DOI:10.1016/j.jbc.2024.107628
Kruti Dalal, Weiming Yang, E Tian, Aliona Chernish, Peggy McCluggage, Alexander J Lara, Kelly G Ten Hagen, Lawrence A Tabak
{"title":"In vivo mapping of the mouse Galnt3-specific O-glycoproteome.","authors":"Kruti Dalal, Weiming Yang, E Tian, Aliona Chernish, Peggy McCluggage, Alexander J Lara, Kelly G Ten Hagen, Lawrence A Tabak","doi":"10.1016/j.jbc.2024.107628","DOIUrl":null,"url":null,"abstract":"<p><p>The UDP-N-acetylgalactosamine polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes initiates O-linked glycosylation by catalyzing the addition of the first GalNAc sugar to serine or threonine on proteins destined to be membrane-bound or secreted. Defects in individual isoforms of the GalNAc-T family can lead to certain congenital disorders of glycosylation (CDG). The polypeptide N-acetylgalactosaminyltransferase 3 (GALNT)3-CDG, is caused by mutations in GALNT3, resulting in hyperphosphatemic familial tumoral calcinosis due to impaired glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) within osteocytes of the bone. Patients with hyperphosphatemia present altered bone density, abnormal tooth structure, and calcified masses throughout the body. It is therefore important to identify all potential substrates of GalNAc-T3 throughout the body to understand the complex disease phenotypes. Here, we compared the Galnt3<sup>-/-</sup> mouse model, which partially phenocopies GALNT3-CDG, with WT mice and used a multicomponent approach using chemoenzymatic conditions, a product-dependent method constructed using EThcD triggered scans in a mass spectrometry workflow, quantitative O-glycoproteomics, and global proteomics to identify 663 Galnt3-specific O-glycosites from 269 glycoproteins across multiple tissues. Consistent with the mouse and human phenotypes, functional networks of glycoproteins that contain GalNAc-T3-specific O-glycosites involved in skeletal morphology, mineral level maintenance, and hemostasis were identified. This library of in vivo GalNAc-T3-specific substrate proteins and O-glycosites will serve as a valuable resource to understand the functional implications of O-glycosylation and to unravel the underlying causes of complex human GALNT3-CDG phenotypes.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107628","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The UDP-N-acetylgalactosamine polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes initiates O-linked glycosylation by catalyzing the addition of the first GalNAc sugar to serine or threonine on proteins destined to be membrane-bound or secreted. Defects in individual isoforms of the GalNAc-T family can lead to certain congenital disorders of glycosylation (CDG). The polypeptide N-acetylgalactosaminyltransferase 3 (GALNT)3-CDG, is caused by mutations in GALNT3, resulting in hyperphosphatemic familial tumoral calcinosis due to impaired glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) within osteocytes of the bone. Patients with hyperphosphatemia present altered bone density, abnormal tooth structure, and calcified masses throughout the body. It is therefore important to identify all potential substrates of GalNAc-T3 throughout the body to understand the complex disease phenotypes. Here, we compared the Galnt3-/- mouse model, which partially phenocopies GALNT3-CDG, with WT mice and used a multicomponent approach using chemoenzymatic conditions, a product-dependent method constructed using EThcD triggered scans in a mass spectrometry workflow, quantitative O-glycoproteomics, and global proteomics to identify 663 Galnt3-specific O-glycosites from 269 glycoproteins across multiple tissues. Consistent with the mouse and human phenotypes, functional networks of glycoproteins that contain GalNAc-T3-specific O-glycosites involved in skeletal morphology, mineral level maintenance, and hemostasis were identified. This library of in vivo GalNAc-T3-specific substrate proteins and O-glycosites will serve as a valuable resource to understand the functional implications of O-glycosylation and to unravel the underlying causes of complex human GALNT3-CDG phenotypes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠 Galnt3 特异性 O 型糖蛋白组的体内图谱。
UDP-N-乙酰半乳糖胺多肽:N-乙酰半乳糖氨基转移酶(GalNAc-T)家族的酶通过催化丝氨酸或苏氨酸上的第一个GalNAc糖的添加,启动O-连接糖基化。GalNAc-T 家族中个别同工酶的缺陷可导致某些先天性糖基化紊乱(CDG)。GALNT3-CDG是由GALNT3突变引起的,由于骨细胞内磷酸盐调节激素FGF23的糖基化功能受损,导致高磷血症家族性肿瘤性钙化症(HFTC)。高磷血症患者会出现骨密度改变、牙齿结构异常和全身钙化肿块。因此,必须确定 GalNAc-T3 在全身的所有潜在底物,以了解复杂的疾病表型。在这里,我们将部分表现为 GALNT3-CDG 的 Galnt3-/- 小鼠模型与野生型小鼠进行了比较,并采用了一种多组分方法,利用化学酶条件、质谱工作流程中使用 EThcD 触发扫描构建的产物依赖性方法、定量 O-糖蛋白组学和全局蛋白质组学,从多个组织的 269 种糖蛋白中鉴定出了 663 种 Galnt3 特异性 O-糖复合物。与小鼠和人类的表型相一致的是,鉴定出了含有参与骨骼形态、矿物质水平维持和止血的 GalNAc-T3 特异性 O-糖苷复合体的糖蛋白功能网络。这个体内GalNAc-T3特异性底物蛋白和O-糖苷复合体库将成为了解O-糖基化功能影响和揭示人类GALNT3-CDG复杂表型根本原因的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
期刊最新文献
Structural basis of nucleic acid recognition by the N-terminal cold shock domain of the plant glycine-rich protein AtGRP2. Sumoylation of thymine DNA glycosylase impairs productive binding to substrate sites in DNA. DUF99 family proteins are novel endonucleases that cleave deoxyuridine on DNA substrates. Suppressed ORAI1-STIM1-dependent Ca2+ entry by protein kinase C isoforms regulating platelet procoagulant activity. AMH regulates a mosaic population of AMHR2-positive cells in the ovarian surface epithelium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1