Identifying the key hub genes linked with lung squamous cell carcinoma by examining the differentially expressed and survival genes.

IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Genetics and Genomics Pub Date : 2024-08-03 DOI:10.1007/s00438-024-02169-8
Anushka Pravin Chawhan, Norine Dsouza
{"title":"Identifying the key hub genes linked with lung squamous cell carcinoma by examining the differentially expressed and survival genes.","authors":"Anushka Pravin Chawhan, Norine Dsouza","doi":"10.1007/s00438-024-02169-8","DOIUrl":null,"url":null,"abstract":"<p><p>Lung Squamous Cell Carcinoma is characterised by significant alterations in RNA expression patterns, and a lack of early symptoms and diagnosis results in poor survival rates. Our study aimed to identify the hub genes involved in LUSC by differential expression analysis and their influence on overall survival rates in patients. Thus, identifying genes with the potential to serve as biomarkers and therapeutic targets. RNA sequence data for LUSC was obtained from TCGA and analysed using R Studio. Survival analysis was performed on DE genes. PPI network and hub gene analysis was performed on survival-relevant genes. Enrichment analysis was conducted on the PPI network to elucidate the functional roles of hub genes. Our analysis identified 2774 DEGs in LUSC patient datasets. Survival analysis revealed 511 genes with a significant impact on patient survival. Among these, 20 hub genes-FN1, ACTB, HGF, PDGFRB, PTEN, SNAI1, TGFBR1, ESR1, SERPINE1, THBS1, PDGFRA, VWF, BMP2, LEP, VTN, PXN, ABL1, ITGA3 and ANXA5-were found to have lower expression levels associated with better patient survival, whereas high expression of SOX2 correlated with longer survival. Enrichment analysis indicated that these hub genes are involved in critical cellular and cancer-related pathways. Our study has identified six key hub genes that are differentially expressed and exhibit significant influence over LUSC patient survival outcomes. Further, in vitro and in vivo studies must be conducted on the key genes for their utilisation as therapeutic targets and biomarkers in LUSC.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02169-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lung Squamous Cell Carcinoma is characterised by significant alterations in RNA expression patterns, and a lack of early symptoms and diagnosis results in poor survival rates. Our study aimed to identify the hub genes involved in LUSC by differential expression analysis and their influence on overall survival rates in patients. Thus, identifying genes with the potential to serve as biomarkers and therapeutic targets. RNA sequence data for LUSC was obtained from TCGA and analysed using R Studio. Survival analysis was performed on DE genes. PPI network and hub gene analysis was performed on survival-relevant genes. Enrichment analysis was conducted on the PPI network to elucidate the functional roles of hub genes. Our analysis identified 2774 DEGs in LUSC patient datasets. Survival analysis revealed 511 genes with a significant impact on patient survival. Among these, 20 hub genes-FN1, ACTB, HGF, PDGFRB, PTEN, SNAI1, TGFBR1, ESR1, SERPINE1, THBS1, PDGFRA, VWF, BMP2, LEP, VTN, PXN, ABL1, ITGA3 and ANXA5-were found to have lower expression levels associated with better patient survival, whereas high expression of SOX2 correlated with longer survival. Enrichment analysis indicated that these hub genes are involved in critical cellular and cancer-related pathways. Our study has identified six key hub genes that are differentially expressed and exhibit significant influence over LUSC patient survival outcomes. Further, in vitro and in vivo studies must be conducted on the key genes for their utilisation as therapeutic targets and biomarkers in LUSC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过研究差异表达基因和存活基因,确定与肺鳞癌相关的关键枢纽基因。
肺鳞状细胞癌(Lung Squamous Cell Carcinoma)的特征是 RNA 表达模式的显著改变,缺乏早期症状和诊断导致生存率低下。我们的研究旨在通过差异表达分析确定肺鳞状细胞癌所涉及的枢纽基因及其对患者总体生存率的影响。从而确定有可能作为生物标志物和治疗靶点的基因。LUSC 的 RNA 序列数据来自 TCGA,并使用 R Studio 进行分析。对 DE 基因进行了生存分析。对生存相关基因进行PPI网络和中心基因分析。对PPI网络进行了富集分析,以阐明枢纽基因的功能作用。我们的分析在LUSC患者数据集中发现了2774个DEGs。生存分析显示,511个基因对患者生存有显著影响。其中,20个中心基因--FN1、ACTB、HGF、PDGFRB、PTEN、SNAI1、TGFBR1、ESR1、SERPINE1、THBS1、PDGFRA、VWF、BMP2、LEP、VTN、PXN、ABL1、ITGA3和ANXA5--的表达水平较低,患者生存率较高,而SOX2的高表达与生存期延长相关。富集分析表明,这些枢纽基因参与了关键的细胞和癌症相关通路。我们的研究发现了六个关键的枢纽基因,这些基因的表达存在差异,并对 LUSC 患者的生存结果有显著影响。此外,还必须对这些关键基因进行体外和体内研究,以便将它们用作 LUSC 的治疗靶点和生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
期刊最新文献
Research progress of nanog gene in fish. A systematic investigation of clear cell renal cell carcinoma using meta-analysis and systems biology approaches Transcriptomic analysis reveals oxidative stress-related signature and molecular subtypes in cholangio carcinoma. Uncovering novel regulatory variants in carbohydrate metabolism: a comprehensive multi-omics study of glycemic traits in the Indian population. A homozygous missense variant in YTHDC2 induces azoospermia in two siblings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1