Mustafa Noaman Kadhim , Dhiah Al-Shammary , Fahim Sufi
{"title":"A novel voice classification based on Gower distance for Parkinson disease detection","authors":"Mustafa Noaman Kadhim , Dhiah Al-Shammary , Fahim Sufi","doi":"10.1016/j.ijmedinf.2024.105583","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Traditional classifier for the classification of diseases, such as K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM), often struggle with high-dimensional medical datasets.</p></div><div><h3>Objective</h3><p>This study presents a novel classifier to overcome the limitations of traditional classifiers in Parkinson’s disease (PD) detection based on Gower distance.</p></div><div><h3>Methods</h3><p>We present the Gower distance metric to handle diverse feature sets in voice recordings, which acts as a dissimilarity measure for all feature types, making the model adept at identifying subtle patterns indicative of PD. Additionally, the Cuckoo Search algorithm is employed for feature selection, reducing dimensionality by focusing on key features, thereby lessening the computational load associated with high-dimensional datasets.</p></div><div><h3>Results</h3><p>The proposed classifier based on Gower distance resulted in an accuracy rate of 98.3% with feature selection and achieved an accuracy of 94.92% without the feature selection method. It outperforms traditional classifiers and recent studies in PD detection from voice recordings.</p></div><div><h3>Conclusions</h3><p>This accuracy shows the capability of the approach in the correct classification of instances and points out the potential of the approach as a reliable diagnostic tool for the medical practitioner. The findings state that the proposed approach holds promise for improving the diagnosis and monitoring of PD, both within medical institutions and at homes for the elderly.</p></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"191 ","pages":"Article 105583"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1386505624002466/pdfft?md5=8e63bcbdafb3f27ecfbeea695e2e1a42&pid=1-s2.0-S1386505624002466-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505624002466","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Traditional classifier for the classification of diseases, such as K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM), often struggle with high-dimensional medical datasets.
Objective
This study presents a novel classifier to overcome the limitations of traditional classifiers in Parkinson’s disease (PD) detection based on Gower distance.
Methods
We present the Gower distance metric to handle diverse feature sets in voice recordings, which acts as a dissimilarity measure for all feature types, making the model adept at identifying subtle patterns indicative of PD. Additionally, the Cuckoo Search algorithm is employed for feature selection, reducing dimensionality by focusing on key features, thereby lessening the computational load associated with high-dimensional datasets.
Results
The proposed classifier based on Gower distance resulted in an accuracy rate of 98.3% with feature selection and achieved an accuracy of 94.92% without the feature selection method. It outperforms traditional classifiers and recent studies in PD detection from voice recordings.
Conclusions
This accuracy shows the capability of the approach in the correct classification of instances and points out the potential of the approach as a reliable diagnostic tool for the medical practitioner. The findings state that the proposed approach holds promise for improving the diagnosis and monitoring of PD, both within medical institutions and at homes for the elderly.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.