Research progress on miRNAs function in the interaction between human infectious viruses and hosts: A review.

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2024-10-17 DOI:10.17305/bb.2024.10821
Xiaotong Wang, Wenchang Zhao
{"title":"Research progress on miRNAs function in the interaction between human infectious viruses and hosts: A review.","authors":"Xiaotong Wang, Wenchang Zhao","doi":"10.17305/bb.2024.10821","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) represent a class of non-coding small RNAs that are prevalent in eukaryotes, typically comprising approximately 22 nucleotides, and have the ability to post-transcriptionally regulate gene expression. miRNAs exhibit diverse types and functions, with mechanisms of action that include cell differentiation, proliferation, apoptosis, and regulation of signaling pathways. Both viruses and their hosts can encode miRNAs, which serve as crucial effector molecules in the complex interaction between viruses and host cells. Host miRNAs can either directly interact with the virus genome to inhibit virus replication or facilitate virus replication by providing necessary substances. Viral miRNAs can directly bind to host mRNAs, thereby influencing translation efficiency, suppressing the immune response, and ultimately enhancing virus replication. This article comprehensively reviews the roles of miRNAs in virus-host interactions, aiming to provide valuable insights into viral pathogenic mechanisms and potential therapeutic approaches.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":"1452-1462"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.10821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs (miRNAs) represent a class of non-coding small RNAs that are prevalent in eukaryotes, typically comprising approximately 22 nucleotides, and have the ability to post-transcriptionally regulate gene expression. miRNAs exhibit diverse types and functions, with mechanisms of action that include cell differentiation, proliferation, apoptosis, and regulation of signaling pathways. Both viruses and their hosts can encode miRNAs, which serve as crucial effector molecules in the complex interaction between viruses and host cells. Host miRNAs can either directly interact with the virus genome to inhibit virus replication or facilitate virus replication by providing necessary substances. Viral miRNAs can directly bind to host mRNAs, thereby influencing translation efficiency, suppressing the immune response, and ultimately enhancing virus replication. This article comprehensively reviews the roles of miRNAs in virus-host interactions, aiming to provide valuable insights into viral pathogenic mechanisms and potential therapeutic approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miRNA 在人类传染性病毒与宿主相互作用中的功能研究进展:综述。
微小核糖核酸(miRNA)是真核生物中普遍存在的一类非编码小核糖核酸,通常由大约 22 个核苷酸组成,具有转录后调控基因表达的能力。miRNA 的类型和功能多种多样,作用机制包括细胞分化、增殖、凋亡和信号通路调控。病毒及其宿主都能编码 miRNA,它们是病毒与宿主细胞之间复杂相互作用的关键效应分子。宿主 miRNA 可直接与病毒基因组相互作用,抑制病毒复制,也可通过提供必要的物质促进病毒复制。病毒 miRNA 可直接与宿主 mRNA 结合,从而影响翻译效率,抑制免疫反应,最终促进病毒复制。本文全面综述了 miRNA 在病毒与宿主相互作用中的作用,旨在为病毒致病机制和潜在治疗方法提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Therapeutic effects of chlorogenic acid on allergic rhinitis through TLR4/MAPK/NF-κB pathway modulation. Silencing FOXA1 suppresses inflammation caused by LPS and promotes osteogenic differentiation of periodontal ligament stem cells through the TLR4/MyD88/NF-κB pathway. Systemic immune-inflammation index and the short-term mortality of patients with sepsis: A meta-analysis. hUC-MSC extracellular vesicles protect against hypoxic-ischemic brain injury by promoting NLRP3 ubiquitination. N6-methyladenosine methylation regulators can serve as potential biomarkers for endometriosis related infertility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1