Lv Wang, Qian Tang, Tao Liang, Chenxu Liu, Deen Sun, Shu Wang, Jingchuan Li, Sam Zhang, Yonggang Meng, Yuehua Huang
{"title":"Lubrication performance of graphene in the sliding electrical contact interface","authors":"Lv Wang, Qian Tang, Tao Liang, Chenxu Liu, Deen Sun, Shu Wang, Jingchuan Li, Sam Zhang, Yonggang Meng, Yuehua Huang","doi":"10.1007/s40544-024-0910-7","DOIUrl":null,"url":null,"abstract":"<p>Electrical contact materials are increasingly widely used, but the existing electric contact lubricants still have lots of room for improvement, such as anti-wear performance and lubrication life. Due to the excellent electrical and lubrication properties, graphene shows great potential in lubricating the sliding electrical contact interface, but there is a lack of relevant research. Some researchers have studied the lubrication performance of graphene between the gold-coated/TiN-coated friction pair at an ultra-low current. However, the lubrication performance of graphene on more widely used electrical contact materials such as copper and its alloys under larger and more commonly used current or voltage conditions has not been reported. In this paper, we study the lubrication performance of graphene in the copper and its alloys sliding electrical contact interface under usual parameters, which is explored through four aspects: different substrates—copper and brass, different test methods—constant voltage and constant current, different normal loads and durability test. The experiments demonstrate that graphene can significantly reduce the friction and wear on brass and copper under the above test methods and parameters, with low contact resistance at the same time. Our work is expected to provide a new lubricant for electrical contact materials and contribute to enriching the tribological theory of graphene.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"55 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0910-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrical contact materials are increasingly widely used, but the existing electric contact lubricants still have lots of room for improvement, such as anti-wear performance and lubrication life. Due to the excellent electrical and lubrication properties, graphene shows great potential in lubricating the sliding electrical contact interface, but there is a lack of relevant research. Some researchers have studied the lubrication performance of graphene between the gold-coated/TiN-coated friction pair at an ultra-low current. However, the lubrication performance of graphene on more widely used electrical contact materials such as copper and its alloys under larger and more commonly used current or voltage conditions has not been reported. In this paper, we study the lubrication performance of graphene in the copper and its alloys sliding electrical contact interface under usual parameters, which is explored through four aspects: different substrates—copper and brass, different test methods—constant voltage and constant current, different normal loads and durability test. The experiments demonstrate that graphene can significantly reduce the friction and wear on brass and copper under the above test methods and parameters, with low contact resistance at the same time. Our work is expected to provide a new lubricant for electrical contact materials and contribute to enriching the tribological theory of graphene.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.