{"title":"Navigating the frontier of drug-like chemical space with cutting-edge generative AI models","authors":"Antonio Lavecchia","doi":"10.1016/j.drudis.2024.104133","DOIUrl":null,"url":null,"abstract":"<div><p>Deep generative models (GMs) have transformed the exploration of drug-like chemical space (CS) by generating novel molecules through complex, nontransparent processes, bypassing direct structural similarity. This review examines five key architectures for CS exploration: recurrent neural networks (RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows (NF), and Transformers. It discusses molecular representation choices, training strategies for focused CS exploration, evaluation criteria for CS coverage, and related challenges. Future directions include refining models, exploring new notations, improving benchmarks, and enhancing interpretability to better understand biologically relevant molecular properties.</p></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"29 9","pages":"Article 104133"},"PeriodicalIF":6.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359644624002587/pdfft?md5=0ee815e5dbb9a06826d24ccadbf6fc05&pid=1-s2.0-S1359644624002587-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644624002587","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep generative models (GMs) have transformed the exploration of drug-like chemical space (CS) by generating novel molecules through complex, nontransparent processes, bypassing direct structural similarity. This review examines five key architectures for CS exploration: recurrent neural networks (RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows (NF), and Transformers. It discusses molecular representation choices, training strategies for focused CS exploration, evaluation criteria for CS coverage, and related challenges. Future directions include refining models, exploring new notations, improving benchmarks, and enhancing interpretability to better understand biologically relevant molecular properties.
期刊介绍:
Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed.
Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.