Fabio Zambolin, Fabio Giuseppe Laginestra, Thomas Favaretto, Gaia Giuriato, Matteo Maria Ottaviani, Federico Schena, Pablo Duro-Ocana, Jamie Stewart McPhee, Massimo Venturelli
{"title":"Activation of skeletal muscle mechanoreceptors and nociceptors reduces the exercise performance of the contralateral homologous muscles.","authors":"Fabio Zambolin, Fabio Giuseppe Laginestra, Thomas Favaretto, Gaia Giuriato, Matteo Maria Ottaviani, Federico Schena, Pablo Duro-Ocana, Jamie Stewart McPhee, Massimo Venturelli","doi":"10.1152/ajpregu.00069.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence suggests that activation of muscle nerve afferents may inhibit central motor drive, affecting contractile performance of remote exercising muscles. Although these effects are well documented for metaboreceptors, very little is known about the activation of mechano- and mechanonociceptive afferents on performance fatigability. Therefore, the purpose of the present study was to examine the influence of mechanoreceptors and nociceptors on performance fatigability. Eight healthy young males undertook four randomized experimental sessions on separate occasions in which the experimental knee extensors were the following: <i>1</i>) resting (CTRL), <i>2</i>) passively stretched (ST), <i>3</i>) resting with delayed onset muscle soreness (DOMS), or <i>4</i>) passively stretched with DOMS (DOMS+ST), whereas the contralateral leg performed an isometric time to task failure (TTF). Changes in maximal voluntary contraction (ΔMVC), potentiated twitch force (ΔQ<sub>tw,pot</sub>), and voluntary muscle activation (ΔVA) were also assessed. TTF was reduced in DOMS+ST (-43%) and ST (-29%) compared with CTRL. DOMS+ST also showed a greater reduction of VA (-25% vs. -8%, respectively) and MVC compared with CTRL (-28% vs. -45%, respectively). Rate of perceived exertion (RPE) was significantly increased at the initial stages (20-40-60%) of the TTF in DOMS+ST compared with all conditions. These findings indicate that activation of mechanosensitive and mechanonociceptive afferents of a muscle with DOMS reduces TTF of the contralateral homologous exercising limb, in part, by reducing VA, thereby accelerating mechanisms of central fatigue.<b>NEW & NOTEWORTHY</b> We found that activation of mechanosensitive and nociceptive nerve afferents of a rested muscle group experiencing delayed onset muscle soreness was associated with reduced exercise performance of the homologous exercising muscles of the contralateral limb. This occurred with lower muscle voluntary activation of the exercising muscle at the point of task failure.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R389-R399"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483073/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00069.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing evidence suggests that activation of muscle nerve afferents may inhibit central motor drive, affecting contractile performance of remote exercising muscles. Although these effects are well documented for metaboreceptors, very little is known about the activation of mechano- and mechanonociceptive afferents on performance fatigability. Therefore, the purpose of the present study was to examine the influence of mechanoreceptors and nociceptors on performance fatigability. Eight healthy young males undertook four randomized experimental sessions on separate occasions in which the experimental knee extensors were the following: 1) resting (CTRL), 2) passively stretched (ST), 3) resting with delayed onset muscle soreness (DOMS), or 4) passively stretched with DOMS (DOMS+ST), whereas the contralateral leg performed an isometric time to task failure (TTF). Changes in maximal voluntary contraction (ΔMVC), potentiated twitch force (ΔQtw,pot), and voluntary muscle activation (ΔVA) were also assessed. TTF was reduced in DOMS+ST (-43%) and ST (-29%) compared with CTRL. DOMS+ST also showed a greater reduction of VA (-25% vs. -8%, respectively) and MVC compared with CTRL (-28% vs. -45%, respectively). Rate of perceived exertion (RPE) was significantly increased at the initial stages (20-40-60%) of the TTF in DOMS+ST compared with all conditions. These findings indicate that activation of mechanosensitive and mechanonociceptive afferents of a muscle with DOMS reduces TTF of the contralateral homologous exercising limb, in part, by reducing VA, thereby accelerating mechanisms of central fatigue.NEW & NOTEWORTHY We found that activation of mechanosensitive and nociceptive nerve afferents of a rested muscle group experiencing delayed onset muscle soreness was associated with reduced exercise performance of the homologous exercising muscles of the contralateral limb. This occurred with lower muscle voluntary activation of the exercising muscle at the point of task failure.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.