Glutamatergic and purinergic transmitters and astrocyte modulation in the synaptic transmission in the NTS of rats exposed to short-term sustained hypoxia.
Darlan S Bazilio, Davi J A Moraes, Benedito H Machado
{"title":"Glutamatergic and purinergic transmitters and astrocyte modulation in the synaptic transmission in the NTS of rats exposed to short-term sustained hypoxia.","authors":"Darlan S Bazilio, Davi J A Moraes, Benedito H Machado","doi":"10.1152/ajpregu.00293.2023","DOIUrl":null,"url":null,"abstract":"<p><p>There is evidence that astrocytes modulate synaptic transmission in the nucleus tractus solitarius (NTS) interacting with glutamatergic and purinergic mechanisms. Here, using in situ working heart-brainstem preparations, we evaluated the involvement of astrocyte and glutamatergic/purinergic neurotransmission in the processing of autonomic and respiratory pathways in the NTS of control and rats exposed to sustained hypoxia (SH). Baseline autonomic and respiratory activities and the responses to chemoreflex activation (KCN) were evaluated before and after microinjections of fluorocitrate (FCt, an astrocyte metabolic inhibitor), kynurenic acid, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS) (nonselective antagonists of glutamatergic and purinergic receptors) into the rostral aspect of the caudal commissural NTS. FCt had no effects on the baseline parameters evaluated but reduced the bradycardic response to chemoreflex activation in SH rats. FCt combined with kynurenic acid and PPADS in control rats reduced the baseline duration of expiration, which was attenuated after SH. FCt produced a large increase in PN frequency discharge in control rats, which was reduced after SH, indicating a reduction in the astrocyte modulation after SH. The data show that <i>1</i>) the bradycardic component of the peripheral chemoreflex is reduced in SH rats after astrocytes inhibition, <i>2</i>) the inhibition of astrocytes in the presence of double antagonists in the NTS affects the modulation of baseline duration of expiration in control but not in SH rats, and <i>3</i>) the autonomic and respiratory responses to chemoreflex activation are mediated by glutamatergic and purinergic receptors in the rostral aspect of the caudal commissural NTS.<b>NEW & NOTEWORTHY</b> Our findings indicate that the neurotransmission of autonomic and respiratory components of the peripheral chemoreflex in the nucleus tractus solitarius (NTS) is mediated by glutamatergic and purinergic mechanisms and reveal a selective involvement of NTS astrocytes in controlling the chemoreflex parasympathetic response in rats exposed to sustained hypoxia (SH) and the baseline duration of expiration mainly in control rats, indicating a selective role for astrocytes modulation in the NTS of control and SH rats.</p>","PeriodicalId":7630,"journal":{"name":"American journal of physiology. Regulatory, integrative and comparative physiology","volume":" ","pages":"R423-R441"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Regulatory, integrative and comparative physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpregu.00293.2023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is evidence that astrocytes modulate synaptic transmission in the nucleus tractus solitarius (NTS) interacting with glutamatergic and purinergic mechanisms. Here, using in situ working heart-brainstem preparations, we evaluated the involvement of astrocyte and glutamatergic/purinergic neurotransmission in the processing of autonomic and respiratory pathways in the NTS of control and rats exposed to sustained hypoxia (SH). Baseline autonomic and respiratory activities and the responses to chemoreflex activation (KCN) were evaluated before and after microinjections of fluorocitrate (FCt, an astrocyte metabolic inhibitor), kynurenic acid, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS) (nonselective antagonists of glutamatergic and purinergic receptors) into the rostral aspect of the caudal commissural NTS. FCt had no effects on the baseline parameters evaluated but reduced the bradycardic response to chemoreflex activation in SH rats. FCt combined with kynurenic acid and PPADS in control rats reduced the baseline duration of expiration, which was attenuated after SH. FCt produced a large increase in PN frequency discharge in control rats, which was reduced after SH, indicating a reduction in the astrocyte modulation after SH. The data show that 1) the bradycardic component of the peripheral chemoreflex is reduced in SH rats after astrocytes inhibition, 2) the inhibition of astrocytes in the presence of double antagonists in the NTS affects the modulation of baseline duration of expiration in control but not in SH rats, and 3) the autonomic and respiratory responses to chemoreflex activation are mediated by glutamatergic and purinergic receptors in the rostral aspect of the caudal commissural NTS.NEW & NOTEWORTHY Our findings indicate that the neurotransmission of autonomic and respiratory components of the peripheral chemoreflex in the nucleus tractus solitarius (NTS) is mediated by glutamatergic and purinergic mechanisms and reveal a selective involvement of NTS astrocytes in controlling the chemoreflex parasympathetic response in rats exposed to sustained hypoxia (SH) and the baseline duration of expiration mainly in control rats, indicating a selective role for astrocytes modulation in the NTS of control and SH rats.
期刊介绍:
The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology publishes original investigations that illuminate normal or abnormal regulation and integration of physiological mechanisms at all levels of biological organization, ranging from molecules to humans, including clinical investigations. Major areas of emphasis include regulation in genetically modified animals; model organisms; development and tissue plasticity; neurohumoral control of circulation and hypertension; local control of circulation; cardiac and renal integration; thirst and volume, electrolyte homeostasis; glucose homeostasis and energy balance; appetite and obesity; inflammation and cytokines; integrative physiology of pregnancy-parturition-lactation; and thermoregulation and adaptations to exercise and environmental stress.