Long-term inhaling ultrafine zinc particles increases cardiac wall stresses elevated by myocardial infarction.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL BioMedical Engineering OnLine Pub Date : 2024-08-05 DOI:10.1186/s12938-024-01275-3
Songyu Wang, Haifang Wang, Li Li, Pei Niu, Zhongjie Yin, Yunlong Huo
{"title":"Long-term inhaling ultrafine zinc particles increases cardiac wall stresses elevated by myocardial infarction.","authors":"Songyu Wang, Haifang Wang, Li Li, Pei Niu, Zhongjie Yin, Yunlong Huo","doi":"10.1186/s12938-024-01275-3","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of cardiac wall mechanics is of importance for understanding coronary heart diseases (CHD). The inhalation of ultrafine particles could deteriorate CHD. The aim of the study is to investigate the effects of cardiac wall mechanics on rats of myocardial infarction (MI) after long-term inhalation of ultrafine Zn particles. Cardiac wall stresses and strains were computed, based on echocardiographic and hemodynamic measurements. It was found that MI resulted in the significantly elevated stresses and the reduced strains. The short-term inhalation of ultrafine Zn particles decreased stresses and increased strains in MI rats, but the long-term inhalation had the opposite effects. Hence, the short-term inhalation of ultrafine Zn particles could alleviate the MI-induced LV dysfunction while the long-term inhalation impaired it.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"78"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01275-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of cardiac wall mechanics is of importance for understanding coronary heart diseases (CHD). The inhalation of ultrafine particles could deteriorate CHD. The aim of the study is to investigate the effects of cardiac wall mechanics on rats of myocardial infarction (MI) after long-term inhalation of ultrafine Zn particles. Cardiac wall stresses and strains were computed, based on echocardiographic and hemodynamic measurements. It was found that MI resulted in the significantly elevated stresses and the reduced strains. The short-term inhalation of ultrafine Zn particles decreased stresses and increased strains in MI rats, but the long-term inhalation had the opposite effects. Hence, the short-term inhalation of ultrafine Zn particles could alleviate the MI-induced LV dysfunction while the long-term inhalation impaired it.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长期吸入超细锌颗粒会增加因心肌梗死而升高的心肌壁应力。
心壁力学分析对于了解冠心病(CHD)具有重要意义。吸入超细粒子会导致冠心病恶化。本研究旨在探讨心肌梗死(MI)大鼠长期吸入超细锌颗粒后心壁力学的影响。根据超声心动图和血液动力学测量结果计算了心肌壁应力和应变。结果发现,心肌梗死导致应力明显升高,应变降低。短期吸入超细锌颗粒可降低心肌梗死大鼠的应力和应变,但长期吸入则效果相反。因此,短期吸入超细锌颗粒可减轻心肌缺血引起的左心室功能障碍,而长期吸入则会损害左心室功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
期刊最新文献
Application effect of enhanced recovery after surgery on patients with hepatolithiasis undergoing hepatectomy. Expression of periostin in the epithelium of cholesteatoma with different degrees of ossicular chain destruction and its clinical value in predicting postoperative hearing recovery. Transcatheter bicuspid venous valve prostheses: fluid mechanical performance testing of artificial nonwoven leaflets. Albumin nanoparticles are a promising drug delivery system in dentistry. Optimizing stent retrievers for mechanical enhancement and in vitro testing in acute ischemic stroke models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1