Dissecting transposable elements and endogenous retroviruses upregulation by HDAC inhibitors in leiomyosarcoma cells: Implications for the interferon response
Nicolò Gualandi, Martina Minisini, Alessio Bertozzo, Claudio Brancolini
{"title":"Dissecting transposable elements and endogenous retroviruses upregulation by HDAC inhibitors in leiomyosarcoma cells: Implications for the interferon response","authors":"Nicolò Gualandi, Martina Minisini, Alessio Bertozzo, Claudio Brancolini","doi":"10.1016/j.ygeno.2024.110909","DOIUrl":null,"url":null,"abstract":"<div><p>Transposable elements (TEs) are of interest as immunomodulators for cancer therapies. TEs can fold into dsRNAs that trigger the interferon response. Here, we investigated the effect of different HDAC inhibitors (HDACIs) on the expression of TEs in leiomyosarcoma cells. Our data show that endogenous retroviruses (ERVs), especially ERV1 elements, are upregulated after treatment with HDAC1/2/3-specific inhibitors. Surprisingly, the interferon response was not activated. We observed an increase in A-to-I editing of upregulated ERV1. This could have an impact on the stability of dsRNAs and the activation of the interferon response. We also found that H3K27ac levels are increased in the LTR12 subfamilies, which could be regulatory elements controlling the expression of proapoptotic genes such as <em>TNFRSF10B</em>. In summary, we provide a detailed characterization of TEs modulation in response to HDACIs and suggest the use of HDACIs in combination with ADAR inhibitors to induce cell death and support immunotherapy in cancer.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888754324001307/pdfft?md5=6f2801b75ee2c5d7fd35841f95f86b6b&pid=1-s2.0-S0888754324001307-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001307","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Transposable elements (TEs) are of interest as immunomodulators for cancer therapies. TEs can fold into dsRNAs that trigger the interferon response. Here, we investigated the effect of different HDAC inhibitors (HDACIs) on the expression of TEs in leiomyosarcoma cells. Our data show that endogenous retroviruses (ERVs), especially ERV1 elements, are upregulated after treatment with HDAC1/2/3-specific inhibitors. Surprisingly, the interferon response was not activated. We observed an increase in A-to-I editing of upregulated ERV1. This could have an impact on the stability of dsRNAs and the activation of the interferon response. We also found that H3K27ac levels are increased in the LTR12 subfamilies, which could be regulatory elements controlling the expression of proapoptotic genes such as TNFRSF10B. In summary, we provide a detailed characterization of TEs modulation in response to HDACIs and suggest the use of HDACIs in combination with ADAR inhibitors to induce cell death and support immunotherapy in cancer.