Cell membrane patches transfer CAR molecules from a cellular depot to conventional T cells for constructing innovative fused-CAR-T cells without necessitating genetic modification.

IF 9.4 1区 医学 Q1 HEMATOLOGY Experimental Hematology & Oncology Pub Date : 2024-08-05 DOI:10.1186/s40164-024-00545-z
Jing Hu, Luyi Zhong, Yiqiu Wang, Shiyi Hu, Lijiaqi Zhang, Qingchang Tian
{"title":"Cell membrane patches transfer CAR molecules from a cellular depot to conventional T cells for constructing innovative fused-CAR-T cells without necessitating genetic modification.","authors":"Jing Hu, Luyi Zhong, Yiqiu Wang, Shiyi Hu, Lijiaqi Zhang, Qingchang Tian","doi":"10.1186/s40164-024-00545-z","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) serves as the foundational element of CAR-T cells. Exogenous CAR molecules can exert functional effects on allogeneic T cells, leading to their activation and subsequent functional alterations. Here we show a new method based on this biological principle: the transfer of CAR molecules from exogenous cells to the membrane of receptor T cells. This process facilitates receptor T cell to recognize target antigens and induces their activation. These patches imbued normal T cells with enhanced tumor targeting capabilities and activated their inherent killing functions. This method's efficacy introduces an approach for constructing non-genetically manipulated CAR-T cells and holds potential for application to other immune cells.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"13 1","pages":"75"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302086/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00545-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chimeric antigen receptor (CAR) serves as the foundational element of CAR-T cells. Exogenous CAR molecules can exert functional effects on allogeneic T cells, leading to their activation and subsequent functional alterations. Here we show a new method based on this biological principle: the transfer of CAR molecules from exogenous cells to the membrane of receptor T cells. This process facilitates receptor T cell to recognize target antigens and induces their activation. These patches imbued normal T cells with enhanced tumor targeting capabilities and activated their inherent killing functions. This method's efficacy introduces an approach for constructing non-genetically manipulated CAR-T cells and holds potential for application to other immune cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞膜贴片可将细胞储库中的 CAR 分子转移到传统 T 细胞中,从而构建出创新的融合 CAR-T 细胞,而无需进行基因修饰。
嵌合抗原受体(CAR)是 CAR-T 细胞的基本要素。外源性 CAR 分子可以对异体 T 细胞产生功能效应,导致其活化和随后的功能改变。在此,我们展示了一种基于这一生物学原理的新方法:将 CAR 分子从外源细胞转移到受体 T 细胞膜上。这一过程有助于受体 T 细胞识别目标抗原并诱导其活化。这些贴片赋予正常 T 细胞更强的肿瘤靶向能力,并激活其固有的杀伤功能。这种方法的有效性为构建非基因操纵的 CAR-T 细胞提供了一种方法,并有望应用于其他免疫细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
期刊最新文献
Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Applications of liposomes and lipid nanoparticles in cancer therapy: current advances and prospects. A non-conditioned bone marrow transplantation mouse model to study clonal hematopoiesis and myeloid malignancies. EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1