Cell membrane patches transfer CAR molecules from a cellular depot to conventional T cells for constructing innovative fused-CAR-T cells without necessitating genetic modification.
{"title":"Cell membrane patches transfer CAR molecules from a cellular depot to conventional T cells for constructing innovative fused-CAR-T cells without necessitating genetic modification.","authors":"Jing Hu, Luyi Zhong, Yiqiu Wang, Shiyi Hu, Lijiaqi Zhang, Qingchang Tian","doi":"10.1186/s40164-024-00545-z","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) serves as the foundational element of CAR-T cells. Exogenous CAR molecules can exert functional effects on allogeneic T cells, leading to their activation and subsequent functional alterations. Here we show a new method based on this biological principle: the transfer of CAR molecules from exogenous cells to the membrane of receptor T cells. This process facilitates receptor T cell to recognize target antigens and induces their activation. These patches imbued normal T cells with enhanced tumor targeting capabilities and activated their inherent killing functions. This method's efficacy introduces an approach for constructing non-genetically manipulated CAR-T cells and holds potential for application to other immune cells.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302086/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00545-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR) serves as the foundational element of CAR-T cells. Exogenous CAR molecules can exert functional effects on allogeneic T cells, leading to their activation and subsequent functional alterations. Here we show a new method based on this biological principle: the transfer of CAR molecules from exogenous cells to the membrane of receptor T cells. This process facilitates receptor T cell to recognize target antigens and induces their activation. These patches imbued normal T cells with enhanced tumor targeting capabilities and activated their inherent killing functions. This method's efficacy introduces an approach for constructing non-genetically manipulated CAR-T cells and holds potential for application to other immune cells.
细胞膜贴片可将细胞储库中的 CAR 分子转移到传统 T 细胞中,从而构建出创新的融合 CAR-T 细胞,而无需进行基因修饰。
嵌合抗原受体(CAR)是 CAR-T 细胞的基本要素。外源性 CAR 分子可以对异体 T 细胞产生功能效应,导致其活化和随后的功能改变。在此,我们展示了一种基于这一生物学原理的新方法:将 CAR 分子从外源细胞转移到受体 T 细胞膜上。这一过程有助于受体 T 细胞识别目标抗原并诱导其活化。这些贴片赋予正常 T 细胞更强的肿瘤靶向能力,并激活其固有的杀伤功能。这种方法的有效性为构建非基因操纵的 CAR-T 细胞提供了一种方法,并有望应用于其他免疫细胞。
期刊介绍:
Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings.
Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.