The next frontier in immunotherapy: potential and challenges of CAR-macrophages.

IF 9.4 1区 医学 Q1 HEMATOLOGY Experimental Hematology & Oncology Pub Date : 2024-08-05 DOI:10.1186/s40164-024-00549-9
Jing Li, Ping Chen, Wenxue Ma
{"title":"The next frontier in immunotherapy: potential and challenges of CAR-macrophages.","authors":"Jing Li, Ping Chen, Wenxue Ma","doi":"10.1186/s40164-024-00549-9","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor macrophage (CAR-MΦ) represents a significant advancement in immunotherapy, especially for treating solid tumors where traditional CAR-T therapies face limitations. CAR-MΦ offers a promising approach to target and eradicate tumor cells by utilizing macrophages' phagocytic and antigen-presenting abilities. However, challenges such as the complex tumor microenvironment (TME), variability in antigen expression, and immune suppression limit their efficacy. This review addresses these issues, exploring mechanisms of CAR-MΦ action, optimal construct designs, and interactions within the TME. It also delves into the ex vivo manufacturing challenges of CAR-MΦ, discussing autologous and allogeneic sources and the importance of stringent quality control. The potential synergies of integrating CAR-MΦ with existing cancer therapies like checkpoint inhibitors and conventional chemotherapeutics are examined to highlight possible enhanced treatment outcomes. Furthermore, regulatory pathways for CAR-MΦ therapies are scrutinized alongside established protocols for CAR-T cells, identifying unique considerations essential for clinical trials and market approval. Proposed safety monitoring frameworks aim to manage potential adverse events, such as cytokine release syndrome, crucial for patient safety. Consolidating current research and clinical insights, this review seeks to refine CAR-MΦ therapeutic applications, overcome barriers, and suggest future research directions to transition CAR-MΦ therapies from experimental platforms to standard cancer care options.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00549-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chimeric antigen receptor macrophage (CAR-MΦ) represents a significant advancement in immunotherapy, especially for treating solid tumors where traditional CAR-T therapies face limitations. CAR-MΦ offers a promising approach to target and eradicate tumor cells by utilizing macrophages' phagocytic and antigen-presenting abilities. However, challenges such as the complex tumor microenvironment (TME), variability in antigen expression, and immune suppression limit their efficacy. This review addresses these issues, exploring mechanisms of CAR-MΦ action, optimal construct designs, and interactions within the TME. It also delves into the ex vivo manufacturing challenges of CAR-MΦ, discussing autologous and allogeneic sources and the importance of stringent quality control. The potential synergies of integrating CAR-MΦ with existing cancer therapies like checkpoint inhibitors and conventional chemotherapeutics are examined to highlight possible enhanced treatment outcomes. Furthermore, regulatory pathways for CAR-MΦ therapies are scrutinized alongside established protocols for CAR-T cells, identifying unique considerations essential for clinical trials and market approval. Proposed safety monitoring frameworks aim to manage potential adverse events, such as cytokine release syndrome, crucial for patient safety. Consolidating current research and clinical insights, this review seeks to refine CAR-MΦ therapeutic applications, overcome barriers, and suggest future research directions to transition CAR-MΦ therapies from experimental platforms to standard cancer care options.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免疫疗法的下一个前沿:CAR-巨噬细胞的潜力与挑战。
嵌合抗原受体巨噬细胞(CAR-MΦ)是免疫疗法的一大进步,尤其是在治疗实体瘤方面,传统的CAR-T疗法面临着种种限制。通过利用巨噬细胞的吞噬和抗原递呈能力,CAR-MΦ为靶向和消灭肿瘤细胞提供了一种前景广阔的方法。然而,复杂的肿瘤微环境(TME)、抗原表达的可变性以及免疫抑制等挑战限制了它们的疗效。本综述针对这些问题,探讨了CAR-MΦ的作用机制、最佳构建设计以及TME内的相互作用。它还深入探讨了 CAR-MΦ 的体外制造挑战,讨论了自体和异体来源以及严格质量控制的重要性。研究还探讨了将 CAR-MΦ 与现有癌症疗法(如检查点抑制剂和传统化疗药物)相结合的潜在协同作用,以突出可能增强的治疗效果。此外,CAR-MΦ疗法的监管途径与CAR-T细胞的既定方案一起进行了仔细研究,确定了临床试验和市场批准所必需的独特考虑因素。拟议的安全监测框架旨在管理潜在的不良事件,如细胞因子释放综合征,这对患者安全至关重要。本综述综合了当前的研究和临床见解,旨在完善CAR-MΦ疗法的应用,克服障碍,并提出未来的研究方向,将CAR-MΦ疗法从实验平台过渡到标准癌症治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
期刊最新文献
Correction: Efficacy of NKG2D CAR-T cells with IL-15/IL-15Rα signaling for treating Epstein-Barr virus-associated lymphoproliferative disorder Identifying ADGRG1 as a specific marker for tumor-reactive T cells in acute myeloid leukemia. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Polyunsaturated fatty acids promote M2-like TAM deposition via dampening RhoA-YAP1 signaling in the ovarian cancer microenvironment. Genetic factors, risk prediction and AI application of thrombotic diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1