Identification of mutations resulting in derepression of the intermedilysin gene by sequential mutagenesis of its promoter region in Streptococcus intermedius.
{"title":"Identification of mutations resulting in derepression of the intermedilysin gene by sequential mutagenesis of its promoter region in Streptococcus intermedius.","authors":"Toshifumi Tomoyasu, Atsushi Tabata, Hideaki Nagamune","doi":"10.1093/femsle/fnae063","DOIUrl":null,"url":null,"abstract":"<p><p>Streptococcus intermedius secretes the human-specific cytolysin intermedilysin (ILY), a crucial factor in the pathogenicity of this bacterium. Previously, we reported that a lactose phosphotransferase repressor (LacR) represses ily expression, and that its mutation increases ILY production. Interestingly, UNS40, a strain isolated from a liver abscess, produces high levels of ILY despite the absence of mutations in the lacR promoter and coding regions. Our results showed that a G > A mutation at the -90th position from the transcription start point in the UNS40 ily promoter region increased hemolytic activity and decreased the binding ability to LacR. To elucidate the regions involved in the repression of ily expression, we generated mutant strains, in which point or deletion mutations were introduced into the ily promoter region, and then compared their hemolytic activity. Among the point mutations, -120 C > A and -90 G > A and their flanking mutations increased hemolytic activity. These results indicated that these mutations may increase the virulence of S. intermedius.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Streptococcus intermedius secretes the human-specific cytolysin intermedilysin (ILY), a crucial factor in the pathogenicity of this bacterium. Previously, we reported that a lactose phosphotransferase repressor (LacR) represses ily expression, and that its mutation increases ILY production. Interestingly, UNS40, a strain isolated from a liver abscess, produces high levels of ILY despite the absence of mutations in the lacR promoter and coding regions. Our results showed that a G > A mutation at the -90th position from the transcription start point in the UNS40 ily promoter region increased hemolytic activity and decreased the binding ability to LacR. To elucidate the regions involved in the repression of ily expression, we generated mutant strains, in which point or deletion mutations were introduced into the ily promoter region, and then compared their hemolytic activity. Among the point mutations, -120 C > A and -90 G > A and their flanking mutations increased hemolytic activity. These results indicated that these mutations may increase the virulence of S. intermedius.
中间链球菌会分泌人类特异性细胞溶解素中间溶菌素(ILY),这是该细菌致病性的关键因素。此前,我们曾报道乳糖磷酸转移酶抑制因子(LacR)抑制 ily 的表达,而其突变会增加 ILY 的产生。有趣的是,从肝脓肿中分离出的菌株 UNS40 尽管在 lacR 启动子和编码区没有突变,却能产生高水平的 ILY。我们的研究结果表明,UNS40 ily 启动子区转录起点第 - 90 位的 G > A 突变增加了溶血活性,并降低了与 LacR 的结合能力。为了阐明抑制ily表达的相关区域,我们在ily启动子区域引入了点突变或缺失突变,并产生了突变株,然后比较了它们的溶血活性。在点突变中,-120 C > A 和 -90 G > A 及其侧翼突变增加了溶血活性。这些结果表明,这些突变可能会增加中间体的毒力。
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.