Zhengqun Liu , Han Wang , Hui Han , Ning Li , Zi Zheng , Shiyue Liang , Ruqing Zhong , Liang Chen , Jun Yan , Shuqin Mu
{"title":"The protective effect of dulcitol on lipopolysaccharide-induced intestinal injury in piglets: mechanistic insights","authors":"Zhengqun Liu , Han Wang , Hui Han , Ning Li , Zi Zheng , Shiyue Liang , Ruqing Zhong , Liang Chen , Jun Yan , Shuqin Mu","doi":"10.1016/j.jnutbio.2024.109719","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the protective effect of dulcitol on LPS-induced intestinal injury in piglets and explored the underlying molecular mechanisms. A total of 108 piglets were divided into three groups: CON, LPS, and DUL. The CON and LPS groups were fed a basal diet, the DUL group was fed a diet supplementation with 500 mg/kg dulcitol. On day 29, 6 piglets in the LPS and DUL groups were injected with 100 μg/kg BW of LPS. At 4 h postchallenge, all pigs were slaughtered, and colonic samples were collected. Results showed that dulcitol supplementation boosted intestinal barrier function in LPS-challenged piglets by enhancing intestinal morphology and integrity, and increasing the gene expression of <em>zonula occludens-1, claudin-1</em>, and <em>occludin</em> in the colonic mucosa (<em>P</em> <0.05). Metabolomics showed DUL supplementation mainly increased (<em>P</em> <0.05) the metabolites related to steroid and vitamin metabolism (Cholesterol and Vitamin C). Proteomics showed that dulcitol supplementation altered the protein expression involved in maintaining barrier integrity (FN1, CADM1, and PARD3), inhibiting inflammatory response (SLP1, SFN, and IRF3), and apoptosis (including FAS, ING1, BTK, MTHFR, NOX, and P53BP2) in LPS-challenged piglets (<em>P</em> <0.05). Additionally, dulcitol addition also suppressed the TLR4/NF-κB signaling pathway and apoptosis in mRNA and protein levels. Dulcitol increased the abundance of short-chain fatty acid-producing bacteria (<em>Lactobacillus, Blautia</em>, and <em>Faecalibacterium)</em> at the genus level, but decreased the relative abundance of <em>Proteobacteria</em> at the phylum level and <em>Pseudomonas</em> and <em>Delftia</em> at the genus level in piglets (<em>P</em><.05). In conclusion, these results suggested that the addition of dulcitol alleviated LPS-induced intestinal barrier injury in piglets, probably by maintaining its integrity, inhibiting the TLR4/NF-κB signaling pathways and apoptosis, and modulating the gut microbiota. Therefore, dulcitol can be considered a potential dietary additive for improving intestinal health in pig models.</p></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"133 ","pages":"Article 109719"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324001517","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the protective effect of dulcitol on LPS-induced intestinal injury in piglets and explored the underlying molecular mechanisms. A total of 108 piglets were divided into three groups: CON, LPS, and DUL. The CON and LPS groups were fed a basal diet, the DUL group was fed a diet supplementation with 500 mg/kg dulcitol. On day 29, 6 piglets in the LPS and DUL groups were injected with 100 μg/kg BW of LPS. At 4 h postchallenge, all pigs were slaughtered, and colonic samples were collected. Results showed that dulcitol supplementation boosted intestinal barrier function in LPS-challenged piglets by enhancing intestinal morphology and integrity, and increasing the gene expression of zonula occludens-1, claudin-1, and occludin in the colonic mucosa (P <0.05). Metabolomics showed DUL supplementation mainly increased (P <0.05) the metabolites related to steroid and vitamin metabolism (Cholesterol and Vitamin C). Proteomics showed that dulcitol supplementation altered the protein expression involved in maintaining barrier integrity (FN1, CADM1, and PARD3), inhibiting inflammatory response (SLP1, SFN, and IRF3), and apoptosis (including FAS, ING1, BTK, MTHFR, NOX, and P53BP2) in LPS-challenged piglets (P <0.05). Additionally, dulcitol addition also suppressed the TLR4/NF-κB signaling pathway and apoptosis in mRNA and protein levels. Dulcitol increased the abundance of short-chain fatty acid-producing bacteria (Lactobacillus, Blautia, and Faecalibacterium) at the genus level, but decreased the relative abundance of Proteobacteria at the phylum level and Pseudomonas and Delftia at the genus level in piglets (P<.05). In conclusion, these results suggested that the addition of dulcitol alleviated LPS-induced intestinal barrier injury in piglets, probably by maintaining its integrity, inhibiting the TLR4/NF-κB signaling pathways and apoptosis, and modulating the gut microbiota. Therefore, dulcitol can be considered a potential dietary additive for improving intestinal health in pig models.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.