Triplet carbenes with transition-metal substituents.

IF 19.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nature chemistry Pub Date : 2024-08-05 DOI:10.1038/s41557-024-01597-8
Ze-Jie Lv, Kim A Eisenlohr, Robert Naumann, Thomas Reuter, Hendrik Verplancke, Serhiy Demeshko, Regine Herbst-Irmer, Katja Heinze, Max C Holthausen, Sven Schneider
{"title":"Triplet carbenes with transition-metal substituents.","authors":"Ze-Jie Lv, Kim A Eisenlohr, Robert Naumann, Thomas Reuter, Hendrik Verplancke, Serhiy Demeshko, Regine Herbst-Irmer, Katja Heinze, Max C Holthausen, Sven Schneider","doi":"10.1038/s41557-024-01597-8","DOIUrl":null,"url":null,"abstract":"<p><p>The extraordinary advances in carbene (R<sup>1</sup>-C-R<sup>2</sup>) chemistry have been fuelled by strategies to stabilize the electronic singlet state via π interactions. In contrast, the lack of similarly efficient approaches to obtain authentic triplet carbenes with appreciable lifetimes beyond cryogenic temperatures hampers their exploitation in synthesis and catalysis. Transition-metal substitution represents a potential strategy, but metallocarbenes (M-C-R) usually represent high-lying excited electronic configurations of the well-established carbyne complexes (M≡C-R). Here we report the synthesis and characterization of triplet metallocarbenes (M-C-SiMe<sub>3</sub>, M = Pd<sup>II</sup>, Pt<sup>II</sup>) that are persistent beyond cryogenic conditions, and their selective reactivity towards carbene C-H insertion and carbonylation. Bond analysis reveals significant stabilization by spin-polarized push-pull interactions along both π-bonding planes, which fundamentally differs from bonding in push-pull singlet carbenes. This bonding model, thus, expands key strategies for stabilizing the open-shell carbene electromers and closes a conceptual gap towards carbyne complexes.</p>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":null,"pages":null},"PeriodicalIF":19.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01597-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The extraordinary advances in carbene (R1-C-R2) chemistry have been fuelled by strategies to stabilize the electronic singlet state via π interactions. In contrast, the lack of similarly efficient approaches to obtain authentic triplet carbenes with appreciable lifetimes beyond cryogenic temperatures hampers their exploitation in synthesis and catalysis. Transition-metal substitution represents a potential strategy, but metallocarbenes (M-C-R) usually represent high-lying excited electronic configurations of the well-established carbyne complexes (M≡C-R). Here we report the synthesis and characterization of triplet metallocarbenes (M-C-SiMe3, M = PdII, PtII) that are persistent beyond cryogenic conditions, and their selective reactivity towards carbene C-H insertion and carbonylation. Bond analysis reveals significant stabilization by spin-polarized push-pull interactions along both π-bonding planes, which fundamentally differs from bonding in push-pull singlet carbenes. This bonding model, thus, expands key strategies for stabilizing the open-shell carbene electromers and closes a conceptual gap towards carbyne complexes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有过渡金属取代基的三重碳烯。
通过 π 相互作用稳定电子单态的策略推动了碳烯(R1-C-R2)化学的巨大进步。相比之下,由于缺乏类似的高效方法来获得真正的三重碳烯,且其寿命明显超过低温,这阻碍了它们在合成和催化方面的应用。过渡金属置换是一种潜在的策略,但金属碳化物(M-C-R)通常代表了成熟的羰基复合物(M≡C-R)的高位激发电子构型。在此,我们报告了三重金属碳化物(M-C-SiMe3,M = PdII、PtII)的合成和表征,这些金属碳化物在低温条件下具有持久性,并对碳烯 C-H 插入和羰基化具有选择性反应能力。成键分析表明,沿两个 π 成键平面的自旋极化推拉相互作用具有显著的稳定性,这与推拉单碳烯成键有着本质区别。因此,这种成键模型扩展了稳定开壳碳烯电致发光体的关键策略,并填补了炔烃复合物的概念空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
期刊最新文献
Fused radical SAM and αKG-HExxH domain proteins contain a distinct structural fold and catalyse cyclophane formation and β-hydroxylation A single diiron enzyme catalyses the oxidative rearrangement of tryptophan to indole nitrile Small-molecule properties define partitioning into biomolecular condensates Stereoselective and site-divergent synthesis of C-glycosides Isolation of a NHC-stabilized heavier nitrile and its conversion into an isonitrile analogue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1