A data augmentation procedure to improve detection of spike ripples in brain voltage recordings.

IF 2.4 4区 医学 Q3 NEUROSCIENCES Neuroscience Research Pub Date : 2024-08-03 DOI:10.1016/j.neures.2024.07.005
Emily D Schlafly, Daniel Carbonero, Catherine J Chu, Mark A Kramer
{"title":"A data augmentation procedure to improve detection of spike ripples in brain voltage recordings.","authors":"Emily D Schlafly, Daniel Carbonero, Catherine J Chu, Mark A Kramer","doi":"10.1016/j.neures.2024.07.005","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a major neurological disorder characterized by recurrent, spontaneous seizures. For patients with drug-resistant epilepsy, treatments include neurostimulation or surgical removal of the epileptogenic zone (EZ), the brain region responsible for seizure generation. Precise targeting of the EZ requires reliable biomarkers. Spike ripples - high-frequency oscillations that co-occur with large amplitude epileptic discharges - have gained prominence as a candidate biomarker. However, spike ripple detection remains a challenge. The gold-standard approach requires an expert manually visualize and interpret brain voltage recordings, which limits reproducibility and high-throughput analysis. Addressing these limitations requires more objective, efficient, and automated methods for spike ripple detection, including approaches that utilize deep neural networks. Despite advancements, dataset heterogeneity and scarcity severely limit machine learning performance. Our study explores long-short term memory (LSTM) neural network architectures for spike ripple detection, leveraging data augmentation to improve classifier performance. We highlight the potential of combining training on augmented and in vivo data for enhanced spike ripple detection and ultimately improving diagnostic accuracy in epilepsy treatment.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neures.2024.07.005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is a major neurological disorder characterized by recurrent, spontaneous seizures. For patients with drug-resistant epilepsy, treatments include neurostimulation or surgical removal of the epileptogenic zone (EZ), the brain region responsible for seizure generation. Precise targeting of the EZ requires reliable biomarkers. Spike ripples - high-frequency oscillations that co-occur with large amplitude epileptic discharges - have gained prominence as a candidate biomarker. However, spike ripple detection remains a challenge. The gold-standard approach requires an expert manually visualize and interpret brain voltage recordings, which limits reproducibility and high-throughput analysis. Addressing these limitations requires more objective, efficient, and automated methods for spike ripple detection, including approaches that utilize deep neural networks. Despite advancements, dataset heterogeneity and scarcity severely limit machine learning performance. Our study explores long-short term memory (LSTM) neural network architectures for spike ripple detection, leveraging data augmentation to improve classifier performance. We highlight the potential of combining training on augmented and in vivo data for enhanced spike ripple detection and ultimately improving diagnostic accuracy in epilepsy treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进脑电压记录中尖峰波纹检测的数据增强程序。
癫痫是一种主要的神经系统疾病,其特点是反复、自发的癫痫发作。对于耐药性癫痫患者,治疗方法包括神经刺激或手术切除致痫区(EZ),即导致癫痫发作的脑区。要精确定位 EZ 需要可靠的生物标志物。尖峰波纹--与大振幅癫痫放电同时出现的高频振荡--作为一种候选生物标志物已逐渐受到重视。然而,尖峰波纹检测仍然是一项挑战。金标准方法需要专家手动观察和解释脑电压记录,这限制了可重复性和高通量分析。要解决这些局限性,需要更客观、高效和自动化的尖峰波纹检测方法,包括利用深度神经网络的方法。尽管取得了进步,但数据集的异质性和稀缺性严重限制了机器学习的性能。我们的研究探索了用于尖峰波纹检测的长短期记忆(LSTM)神经网络架构,利用数据增强来提高分类器性能。我们强调了在增强数据和活体数据上结合训练以增强尖峰波纹检测并最终提高癫痫治疗诊断准确性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience Research
Neuroscience Research 医学-神经科学
CiteScore
5.60
自引率
3.40%
发文量
136
审稿时长
28 days
期刊介绍: The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.
期刊最新文献
LRP1-mediated p-tau propagation contributes to cognitive impairment after chronic neuropathic pain in rats. Stress and parental behaviors. Spatial dynamics of spontaneous activity in the developing and adult cortices. Detailed analysis of drift diffusion model parameters estimated for the ultimatum game. Cell type census in cerebral cortex reveals species-specific brain function and connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1