A novel multi-modal model to assist the diagnosis of autism spectrum disorder using eye-tracking data.

IF 4.7 3区 医学 Q1 MEDICAL INFORMATICS Health Information Science and Systems Pub Date : 2024-08-03 eCollection Date: 2024-12-01 DOI:10.1007/s13755-024-00299-2
Brahim Benabderrahmane, Mohamed Gharzouli, Amira Benlecheb
{"title":"A novel multi-modal model to assist the diagnosis of autism spectrum disorder using eye-tracking data.","authors":"Brahim Benabderrahmane, Mohamed Gharzouli, Amira Benlecheb","doi":"10.1007/s13755-024-00299-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Timely and accurate detection of Autism Spectrum Disorder (ASD) is essential for early intervention and improved patient outcomes. This study aims to harness the power of machine learning (ML) techniques to improve ASD detection by incorporating temporal eye-tracking data. We developed a novel ML model to leverage eye scan paths, sequences of distances of eye movement, and a sequence of fixation durations, enhancing the temporal aspect of the analysis for more effective ASD identification.</p><p><strong>Methods: </strong>We utilized a dataset of eye-tracking data without augmentation to train our ML model, which consists of a CNN-GRU-ANN architecture. The model was trained using gaze maps, the sequences of distances between eye fixations, and durations of fixations and saccades. Additionally, we employed a validation dataset to assess the model's performance and compare it with other works.</p><p><strong>Results: </strong>Our ML model demonstrated superior performance in ASD detection compared to the VGG-16 model. By incorporating temporal information from eye-tracking data, our model achieved higher accuracy, precision, and recall. The novel addition of sequence-based features allowed our model to effectively distinguish between ASD and typically developing individuals, achieving an impressive precision value of 93.10% on the validation dataset.</p><p><strong>Conclusion: </strong>This study presents an ML-based approach to ASD detection by utilizing machine learning techniques and incorporating temporal eye-tracking data. Our findings highlight the potential of temporal analysis for improved ASD detection and provide a promising direction for further advancements in the field of eye-tracking-based diagnosis and intervention for neurodevelopmental disorders.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"40"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297859/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00299-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Timely and accurate detection of Autism Spectrum Disorder (ASD) is essential for early intervention and improved patient outcomes. This study aims to harness the power of machine learning (ML) techniques to improve ASD detection by incorporating temporal eye-tracking data. We developed a novel ML model to leverage eye scan paths, sequences of distances of eye movement, and a sequence of fixation durations, enhancing the temporal aspect of the analysis for more effective ASD identification.

Methods: We utilized a dataset of eye-tracking data without augmentation to train our ML model, which consists of a CNN-GRU-ANN architecture. The model was trained using gaze maps, the sequences of distances between eye fixations, and durations of fixations and saccades. Additionally, we employed a validation dataset to assess the model's performance and compare it with other works.

Results: Our ML model demonstrated superior performance in ASD detection compared to the VGG-16 model. By incorporating temporal information from eye-tracking data, our model achieved higher accuracy, precision, and recall. The novel addition of sequence-based features allowed our model to effectively distinguish between ASD and typically developing individuals, achieving an impressive precision value of 93.10% on the validation dataset.

Conclusion: This study presents an ML-based approach to ASD detection by utilizing machine learning techniques and incorporating temporal eye-tracking data. Our findings highlight the potential of temporal analysis for improved ASD detection and provide a promising direction for further advancements in the field of eye-tracking-based diagnosis and intervention for neurodevelopmental disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用眼动数据辅助诊断自闭症谱系障碍的新型多模态模型。
背景和目的:及时准确地检测自闭症谱系障碍(ASD)对于早期干预和改善患者预后至关重要。本研究旨在利用机器学习(ML)技术的力量,通过结合时间眼动跟踪数据来改进 ASD 检测。我们开发了一种新型 ML 模型,利用眼球扫描路径、眼球运动距离序列和固定持续时间序列,增强分析的时间性,从而更有效地识别 ASD:方法:我们利用一个不带增强功能的眼动跟踪数据集来训练我们的 ML 模型,该模型由 CNN-GRU-ANN 架构组成。该模型由 CNN-GRU-ANN 架构组成,训练时使用了注视图、眼球定点之间的距离序列以及定点和眼球移动的持续时间。此外,我们还使用了一个验证数据集来评估模型的性能,并将其与其他作品进行比较:结果:与 VGG-16 模型相比,我们的 ML 模型在 ASD 检测方面表现优异。通过结合眼动跟踪数据中的时间信息,我们的模型获得了更高的准确度、精确度和召回率。基于序列特征的新颖添加使我们的模型能够有效区分 ASD 和典型发育个体,在验证数据集上达到了令人印象深刻的 93.10% 精确度值:本研究利用机器学习技术并结合时间眼动跟踪数据,提出了一种基于 ML 的 ASD 检测方法。我们的研究结果凸显了时间分析在改进 ASD 检测方面的潜力,并为基于眼动追踪的神经发育障碍诊断和干预领域的进一步发展提供了一个很有前景的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
5.00%
发文量
30
期刊介绍: Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.
期刊最新文献
Enhanced prediction of spine surgery outcomes using advanced machine learning techniques and oversampling methods. Leveraging patients' longitudinal data to improve the Hospital One-year Mortality Risk. Insights into depression prediction, likelihood, and associations in children and adolescents: evidence from a 12-years study. Segmentation and severity classification of scar tissues in LGE-CMR images using HDResC-Net with Flamingo gannet search optimization. Deep transfer learning hybrid techniques for precision in breast cancer tumor histopathology classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1