{"title":"Total Synthesis and Anti-inflammatory Activity of Asperjinone and Asperimide C.","authors":"Kittisak Thongpat, Natthawat Milehman, Worarat Rojanaverawong, Pannita Holasut, Sunhapas Soodvilai, Chutima S Vaddhanaphuti, Kwanruthai Tadpetch","doi":"10.1021/acs.jnatprod.4c00557","DOIUrl":null,"url":null,"abstract":"<p><p>Total syntheses of two γ-butenolide natural products, asperjinone (<b>1</b>) and asperimide C (<b>2</b>) in both racemic and chiral forms have been accomplished utilizing Basavaiah's one-pot Friedel-Crafts/maleic anhydride formation protocol as a key strategy. Our syntheses verified the revised structure of <b>1</b> proposed by Williams et al. and the structure and absolute configuration of <b>2</b> reported by the Li group. This work also discloses the unprecedented anti-inflammatory activity of <b>1</b>. Synthetic <b>1</b> exhibited significant anti-inflammatory activity in renal proximal tubular epithelial cells (RPTEC) by suppression of gene expression of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 under LPS-induced renal inflammation condition and was superior to (<i>S</i>)-<b>1</b>, <i>rac</i>-<b>2</b>, <b>2</b>, and a positive drug control, indomethacin. Moreover, compound <b>1</b> inhibited downstream signaling of inflammation by significantly reducing iNOS and COX-2 gene expression and total NO production. The anti-inflammatory activity of asperjinone (<b>1</b>) renders it a potential and promising candidate for developing novel anti-inflammatory agents against inflammation worsening acute kidney injury.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":"2045-2054"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00557","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Total syntheses of two γ-butenolide natural products, asperjinone (1) and asperimide C (2) in both racemic and chiral forms have been accomplished utilizing Basavaiah's one-pot Friedel-Crafts/maleic anhydride formation protocol as a key strategy. Our syntheses verified the revised structure of 1 proposed by Williams et al. and the structure and absolute configuration of 2 reported by the Li group. This work also discloses the unprecedented anti-inflammatory activity of 1. Synthetic 1 exhibited significant anti-inflammatory activity in renal proximal tubular epithelial cells (RPTEC) by suppression of gene expression of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 under LPS-induced renal inflammation condition and was superior to (S)-1, rac-2, 2, and a positive drug control, indomethacin. Moreover, compound 1 inhibited downstream signaling of inflammation by significantly reducing iNOS and COX-2 gene expression and total NO production. The anti-inflammatory activity of asperjinone (1) renders it a potential and promising candidate for developing novel anti-inflammatory agents against inflammation worsening acute kidney injury.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.