Sasikarn Sripetthong, Sirinporn Nalinbenjapun, Abdul Basit, Chitchamai Ovatlarnporn
{"title":"Synthesis of Quarternized Chitosans and Their Potential Applications in the Solubility Enhancement of Indomethacin by Solid Dispersion","authors":"Sasikarn Sripetthong, Sirinporn Nalinbenjapun, Abdul Basit, Chitchamai Ovatlarnporn","doi":"10.1208/s12249-024-02893-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study was designed to synthesize quarternized chitosans (Q-CS) and explore their potential application in aqueous solubility enhancement of indomethacin (IND), a BCS class-II drug. Three different Q-CS; <i>N,N,N</i>-trimethyl chitosan chloride (TMC), <i>N</i>-(4-<i>N‘-</i>methylpyridinylmethyl) chitosan chloride (mPyCS), and <i>N</i>-(4-<i>N’</i>,<i>N’</i>,<i>N’</i>-trimethylaminobenzyl) chitosan chloride (TmBzCS) were synthesized and characterized through various spectroscopic analysis. Q-CS-based solid-dispersion (SD) composites of IND (Q-CS-IND) were prepared using the spray-drying method and characterized through Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential-scanning calorimetry (DSC), and powder X-ray diffraction (P-XRD). The solubility and dissolution profiles of SD-composites of IND were evaluated and compared with physical mixtures (PM). The IND contents were quantified and validated in the composites using UV-Vis spectrophotometer. FTIR and NMR analysis showed the successful preparation of Q-CS. TMC was found with the highest yield (55.13%) and mPyCS with the highest degree of quaternization (DQ) (63.37%). FT-IR analysis of IND-Q-CS composites demonstrated chemical interaction between carbonyl moieties of IND with functional groups of Q-CS. DSC and PXRD analyses demonstrated the transformation of IND in SD composites from crystalline to an amorphous form. All the IND-Q-CS composites were observed with a significant increase in the solubility and dissolution rate of the drug (1996.0 µg/min) compared to PM (1306.8 µg/min), which is higher than pure IND (791.6 µg/min). The contents of IND in TMC, mPyCS, and TmBzCS composites were 97.69–99.92%, 97.66-100.25%, and 97.18-100.11% respectively. Overall, the findings encourage the applications of Q-CS derivatives for increasing IND water solubility and warrant further <i>in vivo</i> biological profiling of IND composites.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-02893-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02893-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
This study was designed to synthesize quarternized chitosans (Q-CS) and explore their potential application in aqueous solubility enhancement of indomethacin (IND), a BCS class-II drug. Three different Q-CS; N,N,N-trimethyl chitosan chloride (TMC), N-(4-N‘-methylpyridinylmethyl) chitosan chloride (mPyCS), and N-(4-N’,N’,N’-trimethylaminobenzyl) chitosan chloride (TmBzCS) were synthesized and characterized through various spectroscopic analysis. Q-CS-based solid-dispersion (SD) composites of IND (Q-CS-IND) were prepared using the spray-drying method and characterized through Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential-scanning calorimetry (DSC), and powder X-ray diffraction (P-XRD). The solubility and dissolution profiles of SD-composites of IND were evaluated and compared with physical mixtures (PM). The IND contents were quantified and validated in the composites using UV-Vis spectrophotometer. FTIR and NMR analysis showed the successful preparation of Q-CS. TMC was found with the highest yield (55.13%) and mPyCS with the highest degree of quaternization (DQ) (63.37%). FT-IR analysis of IND-Q-CS composites demonstrated chemical interaction between carbonyl moieties of IND with functional groups of Q-CS. DSC and PXRD analyses demonstrated the transformation of IND in SD composites from crystalline to an amorphous form. All the IND-Q-CS composites were observed with a significant increase in the solubility and dissolution rate of the drug (1996.0 µg/min) compared to PM (1306.8 µg/min), which is higher than pure IND (791.6 µg/min). The contents of IND in TMC, mPyCS, and TmBzCS composites were 97.69–99.92%, 97.66-100.25%, and 97.18-100.11% respectively. Overall, the findings encourage the applications of Q-CS derivatives for increasing IND water solubility and warrant further in vivo biological profiling of IND composites.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.