Victor Ng, Sonali Sinha, Ardijana Novaj, Jennifer Ma, Niamh McDermott, Xin Pei, Ana Leda F Longhini, Helen Grimsley, Rui Gardner, Ezra Rosen, Simon N Powell, Fresia Pareja, Diana Mandelker, Atif Khan, Jeremy Setton, Anne Roulston, Stephen Morris, Maria Koehler, Nancy Lee, Jorge Reis-Filho, Nadeem Riaz
{"title":"Genotype-Directed Synthetic Cytotoxicity of ATR Inhibition with Radiotherapy.","authors":"Victor Ng, Sonali Sinha, Ardijana Novaj, Jennifer Ma, Niamh McDermott, Xin Pei, Ana Leda F Longhini, Helen Grimsley, Rui Gardner, Ezra Rosen, Simon N Powell, Fresia Pareja, Diana Mandelker, Atif Khan, Jeremy Setton, Anne Roulston, Stephen Morris, Maria Koehler, Nancy Lee, Jorge Reis-Filho, Nadeem Riaz","doi":"10.1158/1078-0432.CCR-24-0154","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The importance of the DNA damage response in mediating effects of radiotherapy (RT) has galvanized efforts to target this pathway with radiosensitizers. Yet early clinical trials of this approach have failed to yield a benefit in unselected populations. We hypothesized that ataxia-telangiectasia mutated (Atm)-null tumors would demonstrate genotype-specific synergy between RT and an inhibitor of the DNA damage response protein ataxia-telangiectasia and Rad3-related (ATR) kinase.</p><p><strong>Experimental design: </strong>We investigated the synergistic potential of the ATR inhibitor (ATRi) RP-3500 and RT in two Atm-null and isogenic murine models, both in vitro and in vivo. Staining of γ-H2AX foci, characterization of the immune response via flow cytometry, and tumor rechallenge experiments were performed to elucidate the mechanism of interaction. To examine genotype specificity, we tested the interaction of ATRi and RT in a Brca1-null model. Finally, patients with advanced cancer with ATM alterations were enrolled in a phase I/II clinical trial to validate preclinical findings.</p><p><strong>Results: </strong>Synergy between RP-3500 and RT was confirmed in Atm-null lines in vitro, characterized by an accumulation of DNA double-strand breaks. In vivo, Atm-null tumor models had higher rates of durable control with RT and ATRi than controls. In contrast, there was no synergy in tumors lacking Brca1. Analysis of the immunologic response indicated that efficacy is largely mediated by cell-intrinsic mechanisms. Lastly, early results from our clinical trial showed complete responses in patients.</p><p><strong>Conclusions: </strong>Genotype-directed radiosensitization with ATRi and RT can unleash significant therapeutic benefit and could represent a novel approach to develop more effective combinatorial synthetic cytotoxic RT-based treatments. See related commentary by Schrank and Colbert, p. 5505.</p>","PeriodicalId":10279,"journal":{"name":"Clinical Cancer Research","volume":" ","pages":"5643-5656"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1078-0432.CCR-24-0154","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The importance of the DNA damage response in mediating effects of radiotherapy (RT) has galvanized efforts to target this pathway with radiosensitizers. Yet early clinical trials of this approach have failed to yield a benefit in unselected populations. We hypothesized that ataxia-telangiectasia mutated (Atm)-null tumors would demonstrate genotype-specific synergy between RT and an inhibitor of the DNA damage response protein ataxia-telangiectasia and Rad3-related (ATR) kinase.
Experimental design: We investigated the synergistic potential of the ATR inhibitor (ATRi) RP-3500 and RT in two Atm-null and isogenic murine models, both in vitro and in vivo. Staining of γ-H2AX foci, characterization of the immune response via flow cytometry, and tumor rechallenge experiments were performed to elucidate the mechanism of interaction. To examine genotype specificity, we tested the interaction of ATRi and RT in a Brca1-null model. Finally, patients with advanced cancer with ATM alterations were enrolled in a phase I/II clinical trial to validate preclinical findings.
Results: Synergy between RP-3500 and RT was confirmed in Atm-null lines in vitro, characterized by an accumulation of DNA double-strand breaks. In vivo, Atm-null tumor models had higher rates of durable control with RT and ATRi than controls. In contrast, there was no synergy in tumors lacking Brca1. Analysis of the immunologic response indicated that efficacy is largely mediated by cell-intrinsic mechanisms. Lastly, early results from our clinical trial showed complete responses in patients.
Conclusions: Genotype-directed radiosensitization with ATRi and RT can unleash significant therapeutic benefit and could represent a novel approach to develop more effective combinatorial synthetic cytotoxic RT-based treatments. See related commentary by Schrank and Colbert, p. 5505.
期刊介绍:
Clinical Cancer Research is a journal focusing on groundbreaking research in cancer, specifically in the areas where the laboratory and the clinic intersect. Our primary interest lies in clinical trials that investigate novel treatments, accompanied by research on pharmacology, molecular alterations, and biomarkers that can predict response or resistance to these treatments. Furthermore, we prioritize laboratory and animal studies that explore new drugs and targeted agents with the potential to advance to clinical trials. We also encourage research on targetable mechanisms of cancer development, progression, and metastasis.