{"title":"Mass-selective instability and resonance ejection modes for DIT with rectangular asymmetric wave shape.","authors":"A I Ivanov, A A Sysoev, N V Konenkov","doi":"10.1177/14690667241270234","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the operation of a digital linear ion trap with resonance radial ejection and mass selective instability modes. Periodic wave shape has a positive part with amplitude <math><msup><mi>V</mi><mo>+</mo></msup><mo>=</mo><msub><mi>V</mi><mn>0</mn></msub></math> and duration <math><mn>0.8</mn><mi>T</mi></math> and negative part with amplitude <math><msup><mi>V</mi><mo>-</mo></msup><mo>=</mo><mo>-</mo><mn>4</mn><msub><mi>V</mi><mn>0</mn></msub></math> and duration <math><mn>0.2</mn><mi>T</mi></math>, where <i>T</i> is the period. The mapping of the stability diagram, calculations of the well's depth and ion oscillations spectra are presented. The process of resonant excitation of ion oscillations by a dipole sinusoidal signal is studied, as well as ion ejection at the stability boundary. The trajectory method is used for this purpose. It is shown that the mass selectivity of dipole excitation is twice as large for rectangular wave shape compared to sinusoidal wave shape. Increasing the diameter of the round rods of the linear trap gives an increase in the resolving power. The possibility of DIT operation in mass-selective instability mode at the boundary point <math><msub><mi>q</mi><mi>b</mi></msub><mo>=</mo><mn>0.39</mn></math> is discussed.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667241270234","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the operation of a digital linear ion trap with resonance radial ejection and mass selective instability modes. Periodic wave shape has a positive part with amplitude and duration and negative part with amplitude and duration , where T is the period. The mapping of the stability diagram, calculations of the well's depth and ion oscillations spectra are presented. The process of resonant excitation of ion oscillations by a dipole sinusoidal signal is studied, as well as ion ejection at the stability boundary. The trajectory method is used for this purpose. It is shown that the mass selectivity of dipole excitation is twice as large for rectangular wave shape compared to sinusoidal wave shape. Increasing the diameter of the round rods of the linear trap gives an increase in the resolving power. The possibility of DIT operation in mass-selective instability mode at the boundary point is discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.