Patricia A Loughney, Paul Cuillier, Timothy L Pruyn, Vicky Doan-Nguyen
{"title":"Tracking copper nanofiller evolution in polysiloxane during processing into SiOC ceramic.","authors":"Patricia A Loughney, Paul Cuillier, Timothy L Pruyn, Vicky Doan-Nguyen","doi":"10.1107/S1600576724003133","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer-derived ceramics (PDCs) remain at the forefront of research for a variety of applications including ultra-high-temperature ceramics, energy storage and functional coatings. Despite their wide use, questions remain about the complex structural transition from polymer to ceramic and how local structure influences the final microstructure and resulting properties. This is further complicated when nanofillers are introduced to tailor structural and functional properties, as nanoparticle surfaces can interact with the matrix and influence the resulting structure. The inclusion of crystalline nanofiller produces a mixed crystalline-amorphous composite, which poses characterization challenges. With this study, we aim to address these challenges with a local-scale structural study that probes changes in a polysiloxane matrix with incorporated copper nanofiller. Composites were processed at three unique temperatures to capture mixing, pyrolysis and initial crystallization stages for the pre-ceramic polymer. We observed the evolution of the nanofiller with electron microscopy and applied synchrotron X-ray diffraction with differential pair distribution function (d-PDF) analysis to monitor changes in the matrix's local structure and interactions with the nanofiller. The application of the d-PDF to PDC materials is novel and informs future studies to understand interfacial interactions between nanofiller and matrix throughout PDC processing.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 4","pages":"945-954"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724003133","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer-derived ceramics (PDCs) remain at the forefront of research for a variety of applications including ultra-high-temperature ceramics, energy storage and functional coatings. Despite their wide use, questions remain about the complex structural transition from polymer to ceramic and how local structure influences the final microstructure and resulting properties. This is further complicated when nanofillers are introduced to tailor structural and functional properties, as nanoparticle surfaces can interact with the matrix and influence the resulting structure. The inclusion of crystalline nanofiller produces a mixed crystalline-amorphous composite, which poses characterization challenges. With this study, we aim to address these challenges with a local-scale structural study that probes changes in a polysiloxane matrix with incorporated copper nanofiller. Composites were processed at three unique temperatures to capture mixing, pyrolysis and initial crystallization stages for the pre-ceramic polymer. We observed the evolution of the nanofiller with electron microscopy and applied synchrotron X-ray diffraction with differential pair distribution function (d-PDF) analysis to monitor changes in the matrix's local structure and interactions with the nanofiller. The application of the d-PDF to PDC materials is novel and informs future studies to understand interfacial interactions between nanofiller and matrix throughout PDC processing.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.