Kiphynet: an online network simulation tool connecting cellular kinetics and physiological transport.

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Metabolomics Pub Date : 2024-08-07 DOI:10.1007/s11306-024-02151-w
M Deepa Maheshvare, Rohit Charaborty, Subhraneel Haldar, Soumyendu Raha, Debnath Pal
{"title":"Kiphynet: an online network simulation tool connecting cellular kinetics and physiological transport.","authors":"M Deepa Maheshvare, Rohit Charaborty, Subhraneel Haldar, Soumyendu Raha, Debnath Pal","doi":"10.1007/s11306-024-02151-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Human metabolism is sustained by functional networks that operate at diverse scales. Capturing local and global dynamics in the human body by hierarchically bridging multi-scale functional networks is a major challenge in physiological modeling.</p><p><strong>Objectives: </strong>To develop an interactive, user-friendly web application that facilitates the simulation and visualization of advection-dispersion transport in three-dimensional (3D) microvascular networks, biochemical exchange, and metabolic reactions in the tissue layer surrounding the vasculature.</p><p><strong>Methods: </strong>To help modelers combine and simulate biochemical processes occurring at multiple scales, KiPhyNet deploys our discrete graph-based modeling framework that bridges functional networks existing at diverse scales. KiPhyNet is implemented in Python based on Apache web server using MATLAB as the simulator engine. KiPhyNet provides the functionality to assimilate multi-omics data from clinical and experimental studies as well as vascular data from imaging studies to investigate the role of structural changes in vascular topology on the functional response of the tissue.</p><p><strong>Results: </strong>With the network topology, its biophysical attributes, values of initial and boundary conditions, parameterized kinetic constants, biochemical species-specific transport properties such as diffusivity as inputs, a user can use our application to simulate and view the simulation results. The results of steady-state velocity and pressure fields and dynamic concentration fields can be interactively examined.</p><p><strong>Conclusion: </strong>KiPhyNet provides barrier-free access to perform time-course simulation experiments by building multi-scale models of microvascular networks in physiology, using a discrete modeling framework. KiPhyNet is freely accessible at   http://pallab.cds.iisc.ac.in/kiphynet/ and the documentation is available at   https://deepamahm.github.io/kiphynet_docs/ .</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02151-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Human metabolism is sustained by functional networks that operate at diverse scales. Capturing local and global dynamics in the human body by hierarchically bridging multi-scale functional networks is a major challenge in physiological modeling.

Objectives: To develop an interactive, user-friendly web application that facilitates the simulation and visualization of advection-dispersion transport in three-dimensional (3D) microvascular networks, biochemical exchange, and metabolic reactions in the tissue layer surrounding the vasculature.

Methods: To help modelers combine and simulate biochemical processes occurring at multiple scales, KiPhyNet deploys our discrete graph-based modeling framework that bridges functional networks existing at diverse scales. KiPhyNet is implemented in Python based on Apache web server using MATLAB as the simulator engine. KiPhyNet provides the functionality to assimilate multi-omics data from clinical and experimental studies as well as vascular data from imaging studies to investigate the role of structural changes in vascular topology on the functional response of the tissue.

Results: With the network topology, its biophysical attributes, values of initial and boundary conditions, parameterized kinetic constants, biochemical species-specific transport properties such as diffusivity as inputs, a user can use our application to simulate and view the simulation results. The results of steady-state velocity and pressure fields and dynamic concentration fields can be interactively examined.

Conclusion: KiPhyNet provides barrier-free access to perform time-course simulation experiments by building multi-scale models of microvascular networks in physiology, using a discrete modeling framework. KiPhyNet is freely accessible at   http://pallab.cds.iisc.ac.in/kiphynet/ and the documentation is available at   https://deepamahm.github.io/kiphynet_docs/ .

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kiphynet:连接细胞动力学和生理运输的在线网络模拟工具。
引言人体新陈代谢由在不同尺度上运行的功能网络维持。通过分层桥接多尺度功能网络来捕捉人体局部和全局动态是生理建模的一大挑战:开发一个交互式、用户友好的网络应用程序,以方便模拟和可视化三维(3D)微血管网络中的平流-分散传输、生化交换以及血管周围组织层中的代谢反应:为了帮助建模人员组合和模拟在多个尺度上发生的生化过程,KiPhyNet 部署了我们基于离散图的建模框架,该框架可连接存在于不同尺度上的功能网络。KiPhyNet 以 Apache 网络服务器为基础,用 Python 实现,使用 MATLAB 作为模拟引擎。KiPhyNet 提供的功能可吸收来自临床和实验研究的多组学数据以及来自成像研究的血管数据,以研究血管拓扑结构变化对组织功能响应的作用:有了网络拓扑结构、其生物物理属性、初始条件和边界条件值、参数化动力学常数、特定生化物种的传输特性(如扩散率)作为输入,用户就可以使用我们的应用程序进行模拟并查看模拟结果。稳态速度场、压力场和动态浓度场的结果均可交互式查看:KiPhyNet采用离散建模框架,通过建立生理学中微血管网络的多尺度模型,为进行时程模拟实验提供了无障碍通道。KiPhyNet 可在 http://pallab.cds.iisc.ac.in/kiphynet/ 免费访问,文档可在 https://deepamahm.github.io/kiphynet_docs/ 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
期刊最新文献
Multiplatform metabolomic interlaboratory study of a whole human stool candidate reference material from omnivore and vegan donors. Sex-bias metabolism of fetal organs, and their relationship to the regulation of fetal brain-placental axis. Identification of novel hypertension biomarkers using explainable AI and metabolomics. Association of urinary volatile organic compounds and chronic kidney disease in patients with diabetes: real-world evidence from the NHANES. Investigation of the reproducibility of the treatment efficacy of a commercial bio stimulant using metabolic profiling on flax.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1