Hui Jin Shin, Sangbo Lee, Se Hee Kim, Joon Soo Lee, Ji Young Oh, Ara Ko, Hoon-Chul Kang
{"title":"Genotypic and phenotypic analysis of Korean patients with tuberous sclerosis complex.","authors":"Hui Jin Shin, Sangbo Lee, Se Hee Kim, Joon Soo Lee, Ji Young Oh, Ara Ko, Hoon-Chul Kang","doi":"10.1007/s10048-024-00777-5","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder caused by mutations in the TSC1 or TSC2 gene. The aim of this study was to analyze the genotypes and phenotypes of Korean patients diagnosed with TSC and expand our understanding of this disorder. This retrospective observational study included 331 patients clinically diagnosed with TSC between November 1990 and April 2023 at Severance Children's Hospital, Seoul, South Korea. The demographic and clinical characteristics of the patients were investigated. Thirty novel variants were identified. Of the 331 patients, 188 underwent genetic testing, and genotype-phenotype variation was analyzed according to the type of gene mutation and functional domain. Fourty-nine patients (49/188, 26%) were had TSC1 mutations, 103 (55%) had TSC2 mutations, and 36 (19%) had no mutation identified (NMI). Hotspots were identified in exons 8 of TSC1 and exons 35 and 41 of TSC2. Patients with TSC2 mutations exhibited a significantly younger age at the time of seizure onset and had refractory epilepsy. Infantile epileptic spasms syndrome (IESS) was more common in the middle mutation domain of TSC2 than in the hamartin domain. Additionally, retinal hamartoma, cardiac rhabdomyoma, and renal abnormalities were significantly associated with TSC2 compared with other gene types. This study contributes to our understanding of TSC by expanding the genotypic spectrum with novel variants and providing insights into the clinical spectrum of patients with TSC in Korea.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10048-024-00777-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder caused by mutations in the TSC1 or TSC2 gene. The aim of this study was to analyze the genotypes and phenotypes of Korean patients diagnosed with TSC and expand our understanding of this disorder. This retrospective observational study included 331 patients clinically diagnosed with TSC between November 1990 and April 2023 at Severance Children's Hospital, Seoul, South Korea. The demographic and clinical characteristics of the patients were investigated. Thirty novel variants were identified. Of the 331 patients, 188 underwent genetic testing, and genotype-phenotype variation was analyzed according to the type of gene mutation and functional domain. Fourty-nine patients (49/188, 26%) were had TSC1 mutations, 103 (55%) had TSC2 mutations, and 36 (19%) had no mutation identified (NMI). Hotspots were identified in exons 8 of TSC1 and exons 35 and 41 of TSC2. Patients with TSC2 mutations exhibited a significantly younger age at the time of seizure onset and had refractory epilepsy. Infantile epileptic spasms syndrome (IESS) was more common in the middle mutation domain of TSC2 than in the hamartin domain. Additionally, retinal hamartoma, cardiac rhabdomyoma, and renal abnormalities were significantly associated with TSC2 compared with other gene types. This study contributes to our understanding of TSC by expanding the genotypic spectrum with novel variants and providing insights into the clinical spectrum of patients with TSC in Korea.
期刊介绍:
Neurogenetics publishes findings that contribute to a better understanding of the genetic basis of normal and abnormal function of the nervous system. Neurogenetic disorders are the main focus of the journal. Neurogenetics therefore includes findings in humans and other organisms that help understand neurological disease mechanisms and publishes papers from many different fields such as biophysics, cell biology, human genetics, neuroanatomy, neurochemistry, neurology, neuropathology, neurosurgery and psychiatry.
All papers submitted to Neurogenetics should be of sufficient immediate importance to justify urgent publication. They should present new scientific results. Data merely confirming previously published findings are not acceptable.