Repair of genomic interstrand crosslinks

IF 3 3区 生物学 Q2 GENETICS & HEREDITY DNA Repair Pub Date : 2024-07-30 DOI:10.1016/j.dnarep.2024.103739
Marina A. Bellani, Althaf Shaik, Ishani Majumdar, Chen Ling, Michael M. Seidman
{"title":"Repair of genomic interstrand crosslinks","authors":"Marina A. Bellani,&nbsp;Althaf Shaik,&nbsp;Ishani Majumdar,&nbsp;Chen Ling,&nbsp;Michael M. Seidman","doi":"10.1016/j.dnarep.2024.103739","DOIUrl":null,"url":null,"abstract":"<div><p>Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.</p></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"141 ","pages":"Article 103739"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424001150","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修复基因组链间交联。
基因组链间交联(ICL)是由正常细胞代谢过程中产生的活性物种、微生物组产生的活性物种以及癌症化疗中使用的活性物种形成的。虽然有多种依赖复制和独立 ICL 修复的方法,但每种方法的关键步骤都是解除一条 DNA 链与另一条 DNA 链的连接。我们对脱钩机制的深入了解大多来自功能强大的模型系统,该系统以质粒为基础,将定义好的 ICL 导入细胞或无细胞提取物中。在这里,我们描述了外源性和内源性 ICL 形成化合物的特性,并从历史角度介绍了 ICL 修复的早期工作。我们讨论了在模型系统中阐明的脱钩模式、耐药性肿瘤中的一致或不一致,以及对 DNA 加合物(包括由代谢醛形成的 ICL)不断发展的看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
DNA Repair
DNA Repair 生物-毒理学
CiteScore
7.60
自引率
5.30%
发文量
91
审稿时长
59 days
期刊介绍: DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease. DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.
期刊最新文献
Discovery of KPT-6566 as STAG1/2 Inhibitor sensitizing PARP and NHEJ Inhibitors to suppress tumor cells growth in vitro Intersection of the fragile X-related disorders and the DNA damage response One-ended and two-ended breaks at nickase-broken replication forks Transient HR enhancement by RAD51-stimulatory compound confers protection on intestinal rather than hematopoietic tissue against irradiation in mice 53BP1-the ‘Pandora’s box’ of genome integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1