The Construction of Stem Cell-Induced Hepatocyte Model And Its Application in Evaluation of Developmental Hepatotoxicity of Environmental Pollutants.

Nadire Nijiati, Dilixiati Wubuli, Xiaobing Li, Zidong Zhou, Mulati Julaiti, Pengfei Huang, Bowen Hu
{"title":"The Construction of Stem Cell-Induced Hepatocyte Model And Its Application in Evaluation of Developmental Hepatotoxicity of Environmental Pollutants.","authors":"Nadire Nijiati, Dilixiati Wubuli, Xiaobing Li, Zidong Zhou, Mulati Julaiti, Pengfei Huang, Bowen Hu","doi":"10.1089/scd.2024.0117","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells, with their ability to self-renew and differentiate into various cell types, are a unique and valuable resource for medical research and toxicological studies. The liver is the most crucial metabolic organ in the human body and serves as the primary site for the accumulation of environmental pollutants. Enrichment with environmental pollutants can disrupt the early developmental processes of the liver and have a significant impact on liver function. The liver comprises a complex array of cell types, and different environmental pollutants have varying effects on these cells. Currently, there is a lack of well-established research models that can effectively demonstrate the mechanisms by which environmental pollutants affect human liver development. The emergence of liver cells and organoids derived from stem cells offers a promising tool for investigating the impact of environmental pollutants on human health. Therefore, this study systematically reviewed the developmental processes of different types of liver cells and provided an overview of studies on the developmental toxicity of various environmental pollutants using stem cell models.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2024.0117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cells, with their ability to self-renew and differentiate into various cell types, are a unique and valuable resource for medical research and toxicological studies. The liver is the most crucial metabolic organ in the human body and serves as the primary site for the accumulation of environmental pollutants. Enrichment with environmental pollutants can disrupt the early developmental processes of the liver and have a significant impact on liver function. The liver comprises a complex array of cell types, and different environmental pollutants have varying effects on these cells. Currently, there is a lack of well-established research models that can effectively demonstrate the mechanisms by which environmental pollutants affect human liver development. The emergence of liver cells and organoids derived from stem cells offers a promising tool for investigating the impact of environmental pollutants on human health. Therefore, this study systematically reviewed the developmental processes of different types of liver cells and provided an overview of studies on the developmental toxicity of various environmental pollutants using stem cell models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干细胞诱导肝细胞模型的构建及其在环境污染物发育期肝毒性评估中的应用
干细胞具有自我更新和分化成各种细胞类型的能力,是医学研究和毒理学研究的独特而宝贵的资源。肝脏是人体最重要的代谢器官,也是环境污染物积聚的主要部位。环境污染物的富集会破坏肝脏的早期发育过程,并对肝脏功能产生重大影响。肝脏由一系列复杂的细胞类型组成,不同的环境污染物对这些细胞的影响各不相同。目前,还缺乏完善的研究模型来有效证明环境污染物影响人类肝脏发育的机制。由干细胞衍生的肝细胞和器官组织的出现,为研究环境污染物对人体健康的影响提供了一种前景广阔的工具。因此,本研究系统回顾了不同类型肝细胞的发育过程,并概述了利用干细胞模型对各种环境污染物的发育毒性进行的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancements in Organoid Culture Technologies: Current Trends and Innovations. Establishment of Periodontal Ligament Stem Cell-like Cells Derived from Feeder-Free Cultured Induced Pluripotent Stem Cells. Safety and Potential Efficacy of Expanded Umbilical Cord-Derived Mesenchymal Stromal Cells in Luminal Ulcerative Colitis Patients. Development of Mesenchymal Stem Cell Encoded with Myogenic Gene for Treating Radiation-Induced Muscle Fibrosis. Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1